ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: a 3D Model Intercomparison

78   0   0.0 ( 0 )
 نشر من قبل Jun Yang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robustly modeling the inner edge of the habitable zone is essential for determining the most promising potentially habitable exoplanets for atmospheric characterization. Global climate models (GCMs) have become the standard tool for calculating this boundary, but divergent results have emerged among the various GCMs. In this study, we perform an inter-comparison of standard GCMs used in the field on a rapidly rotating planet receiving a G-star spectral energy distribution and on a tidally locked planet receiving an M-star spectral energy distribution. Experiments both with and without clouds are examined. We find relatively small difference (within 8 K) in global-mean surface temperature simulation among the models in the G-star case with clouds. In contrast, the global-mean surface temperature simulation in the M-star case is highly divergent (20-30 K). Moreover, even differences in the simulated surface temperature when clouds are turned off are significant. These differences are caused by differences in cloud simulation and/or radiative transfer, as well as complex interactions between atmospheric dynamics and these two processes. For example we find that an increase in atmospheric absorption of shortwave radiation can lead to higher relative humidity at high altitudes globally and, therefore, a significant decrease in planetary radiation emitted to space. This study emphasizes the importance of basing conclusions about planetary climate on simulations from a variety of GCMs and motivates the eventual comparison of GCM results with terrestrial exoplanet observations to improve their performance.



قيم البحث

اقرأ أيضاً

Tidally locked exoplanets likely host global atmospheric circulations with a superrotating equatorial jet, planetary-scale stationary waves and thermally-driven overturning circulation. In this work, we show that each of these features can be separat ed from the total circulation by using a Helmholtz decomposition, which splits the circulation into rotational (divergence free) and divergent (vorticity free) components. This technique is applied to the simulated circulation of a terrestrial planet and a gaseous hot Jupiter. For both planets, the rotational component comprises the equatorial jet and stationary waves, and the divergent component contains the overturning circulation. Separating out each component allows us to evaluate their spatial structure and relative contribution to the total flow. In contrast with previous work, we show that divergent velocities are not negligible when compared with rotational velocities, and that divergent, overturning circulation takes the form of a single, roughly isotropic cell that ascends on the day-side and descends on the night-side. These conclusions are drawn for both the terrestrial case and the hot Jupiter. To illustrate the utility of the Helmholtz decomposition for studying atmospheric processes, we compute the contribution of each of the circulation components to heat transport from day- to night-side. Surprisingly, we find that the divergent circulation dominates day-night heat transport in the terrestrial case and accounts for around half of the heat transport for the hot Jupiter. The relative contributions of the rotational and divergent components to day-night heat transport are likely sensitive to multiple planetary parameters and atmospheric processes, and merit further study.
Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea-ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, night-side sea ice remains O(10 m) thick and night-side water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earths or smaller. Planets with a water complement similar to Earths would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete day-side dessication. Only planets with a geothermal heat flux lower than Earths, much of their surface covered by continents, and a surface water reservoir O(10 %) of Earths would be susceptible to complete water trapping.
Using a shallow water model with time-dependent forcing we show that the peak of an exoplanet thermal phase curve is, in general, offset from secondary eclipse when the planet is rotating. That is, the planetary hot-spot is offset from the point of m aximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset is a function of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady-state in the reference frame of the moving forcing. The model is an extension of the well studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planets surface) exceeds that of the gravity waves then the hotspot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wavespeed of the system the hottest point can lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.
Over large timescales, a terrestrial planet may be driven towards spin-orbit synchronous rotation by tidal forces. In this particular configuration, the planet exhibits permanent dayside and nightside, which may induce strong day-night temperature gr adients. The nightside temperature depends on the efficiency of the day-night heat redistribution and determines the stability of the atmosphere against collapse. To better constrain the atmospheric stability, climate, and surface conditions of rocky planets located in the habitable zone of their host star, it is thus crucial to understand the complex mechanism of heat redistribution. Building on early works and assuming dry thermodynamics, we developed a hierarchy of analytic models taking into account the coupling between radiative transfer, dayside convection, and large-scale atmospheric circulation in the case of slowly rotating planets. There are two types of these models: a zero-dimensional two-layer approach and a two-column radiative-convective-subsiding-upwelling (RCSU) model. They yield analytical solutions and scaling laws characterising the dependence of the collapse pressure on physical features, which are compared to the results obtained by early works using 3D global climate models (GCMs). The analytical theory captures (i) the dependence of temperatures on atmospheric opacities and scattering in the shortwave and in the longwave, (ii) the behaviour of the collapse pressure observed in GCM simulations at low stellar fluxes that are due to the non-linear dependence of the atmospheric opacity on the longwave optical depth at the planets surface, (iii) the increase of stability generated by dayside sensible heating, and (iv) the decrease of stability induced by the increase of the planet size.
89 - Qiyu Song , Jun Yang , Hang Luo 2021
Cloud is critical for planetary climate and habitability, but it is also one of the most challenging parts of studying planets in and beyond the solar system. Previous simulations using global general circulation models (GCMs) found that for 1:1 tida lly locked (i.e., synchronously rotating) terrestrial planets with oceans, strong convergence and convection produce optically thick clouds over the substellar area. One obvious weakness of these studies is that clouds are parameterized based on the knowledge on Earth, and whether it is applicable to exoplanetary environment is unknown. Here we use a cloud-resolving model (CRM) with high resolution (2 km) in a two-dimensional (2D) configuration to simulate the clouds and circulation on tidally locked aqua-planets. We confirm that the substellar area is covered by deep convective clouds, the nightside is dominated by low-level stratus clouds, and these two are linked by a global-scale overturning circulation. We further find that a uniform warming of the surface causes the width of convection and clouds to decrease, but a decrease of day-night surface temperature contrast or an increase of longwave radiative cooling rate causes the width of convection and clouds to increase. These relationships can be roughly interpreted based on some simple thermodynamic theories. Comparing the results between CRM and GCM, we find that the results are broadly similar although there are many significant differences. Future work is required to use 3D CRM(s) with realistic radiative transfer and with the Coriolis force to examine the clouds and climate of tidally locked planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا