ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong decays of the hadronic molecule $Omega^ast (2012)$

267   0   0.0 ( 0 )
 نشر من قبل Valery Lyubovitskij
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong two- and three-body decays of the new excited hyperon $Omega^*(2012)$ are discussed in the hadronic molecular approach. The $Omega^*(2012)$ state is considered to contain the mixed $Xi bar K$ and $Omega eta$ hadronic components. In our calculations we use a phenomenological hadronic Lagrangian describing the coupling of the bound states to its constituents and of the constituents to other hadrons occurring in the final state. Our results show that the decay widths of the two-body decay modes $Omega^*(2012) to Xi bar K$ lie in the few MeV region and are compatible with or dominate over the rates of the three-body modes $Omega^*(2012) to Xi pi bar K$. The sum of two- and three-body decay widths is consistent with a width of the $Omega^*(2012)$ originally measured by the Belle Collaboration. A possible scenario for the suppression of the three-body decay rate recently noticed by the Belle Collaboration is due to the dominant admixture of the $Omega eta$ hadronic component in the $Omega^*(2012)$ state.



قيم البحث

اقرأ أيضاً

Recently, the Belle collaboration measured the ratios of the branching fractions of the newly observed $Omega(2012)$ excited state. They did not observe significant signals for the $Omega(2012) to bar{K} Xi^*(1530) to bar{K} pi Xi$ decay, and reporte d an upper limit for the ratio of the three body decay to the two body decay mode of $Omega(2012) to bar{K} Xi$. In this work, we revisit the newly observed $Omega(2012)$ from the molecular perspective where this resonance appears to be a dynamically generated state with spin-parity $3/2^-$ from the coupled channels interactions of the $bar{K} Xi^*(1530)$ and $eta Omega$ in $s$-wave and $bar{K} Xi$ in $d$-wave. With the model parameters for the $d$-wave interaction, we show that the ratio of these decay fractions reported recently by the Belle collaboration can be easily accommodated.
Stimulated by the newly discovered $Omega(2012)$ resonance at Belle II, in this work we have studied the OZI allowed strong decays of the low-lying $1P$- and $1D$-wave $Omega$ baryons within the $^3P_0$ model. It is found that $Omega(2012)$ is most l ikely to be a $1P$-wave $Omega$ state with $J^P=3/2^-$. We also find that the $Omega(2250)$ state could be assigned as a $1D$-wave state with $J^P=5/2^+$. The other missing $1P$- and $1D$-wave $Omega$ baryons may have large potentials to be observed in their main decay channels.
We investigate the observed pentaquark candidates $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ from the latest LHCb measurement, as well as four possible spin partners in the $bar{D}^{(*)}Sigma_c^*$ system predicted from the heavy quark spin symmetry wit h the hadronic molecule scenarios. Similar to the previous calculation on $P_c(4380)$ and $P_c(4450)$, the partial widths of all the allowed decay channels for these $P_c$ states are estimated with the effective Lagrangian method. The cutoff dependence of our numerical results are also presented. Comparing with the experimental widths, our results show that $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ can be described well with the spin-parity-$1/2^-$-$bar{D}Sigma_c$, $1/2^-$-$bar{D}^*Sigma_c$ and $3/2^-$-$bar{D}^*Sigma_c$ molecule pictures, respectively.
In this paper, we study the OZI-allowed two-body strong decays of $3^-$ heavy-light mesons. Experimentally the charmed $D_{3}^{ast}(2760)$ and the charm-strange $D_{s3}^{ast}(2860)$ states with these quantum numbers have been discovered. For the bott omed $B(5970)$ state, which was found by the CDF Collaboration recently, its quantum number has not been decided yet and we assume its a $3^-$ meson in this paper. The theoretical prediction for the strong decays of bottom-strange state $B_{s3}^ast$ is also given. The relativistic wave functions of $3^-$ heavy mesons are constructed and their numerical values are obtained by solving the corresponding Bethe-Salpeter equation with instantaneous approximation. The transition matrix is calculated by using the PCAC and low energy theorem, following which, the decay widths are obtained. For $D_{3}^ast(2760)$ and $D_{s3}^ast(2860)$, the total strong decay widths are 72.6 MeV and 47.6 MeV, respectively. For $B_3^ast$ with $M=5978$ MeV and $B_{s3}^ast$ with $M=6178$ MeV, their strong decay widths are 22.9 MeV and 40.8 MeV, respectively.
After the discovery of the new $Omega^{*}$ state, the ratio of the branching fractions of $Omega(2012)to bar{K}piXi$ relative to $bar{K}Xi$ decay channel was investigated by the Belle Collaboration recently. The measured $11.9%$ up limit on this rati o is in sharp tension with the $S$-wave $bar{K}Xi(1530)$ molecule interpretation for $Omega(2012)$ which indicates the dominant $bar{K}piXi$ three-body decay. In the present work, we try to explore the possibility of the $P$-wave molecule assignments for $Omega(2012)$ (where $Omega(2012)$ has positive parity). It is found that the latest experimental measurements are compatible with the $1/2^+$ and $3/2^+$ $bar{K}Xi(1530)$ molecular pictures, while the $5/2^+$ $bar{K}Xi(1530)$ molecule shows the larger $bar{K}piXi$ three-body decay compared with the $bar{K}Xi$ decay as the case of $S$-wave molecule. Thus, the newly observed $Omega(2012)$ can be interpreted as the $1/2^+$ or $3/2^+$ $bar{K}Xi(1530)$ molecule state according to current experiment data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا