ﻻ يوجد ملخص باللغة العربية
We generalise sheaf models of intuitionistic logic to univalent type theory over a small category with a Grothendieck topology. We use in a crucial way that we have constructive models of univalence, that can then be relativized to any presheaf models, and these sheaf models are obtained by localisation for a left exact modality. We provide first an abstract notion of descent data which can be thought of as a higher version of the notion of prenucleus on frames, from which can be generated a nucleus (left exact modality) by transfinite iteration. We then provide several examples.
We introduce Z-stability, a notion capturing the intuition that if a function f maps a metric space into a normed space and if the norm of f(x) is small, then x is close to a zero of f. Working in Bishops constructive setting, we first study pointwi
We show that numerous distinctive concepts of constructive mathematics arise automatically from an antithesis translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented sub
We study idempotents in intensional Martin-Lof type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodskys univalence axiom, there exist idempotents that do not s
Cubical type theory provides a constructive justification of homotopy type theory. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical cho
This is an introduction to Homotopy Type Theory and Univalent Foundations for philosophers, written as a chapter for the book Categories for the Working Philosopher (ed. Elaine Landry)