ﻻ يوجد ملخص باللغة العربية
For $beta > 1$, a sequence $(c_n)_{n geq 1} in mathbb{Z}^{mathbb{N}^+}$ with $0 leq c_n < beta$ is the emph{beta expansion} of $x$ with respect to $beta$ if $x = sum_{n = 1}^infty c_nbeta^{-n}$. Defining $d_beta(x)$ to be the greedy beta expansion of $x$ with respect to $beta$, it is known that $d_beta(1)$ is eventually periodic as long as $beta$ is a Pisot number. It is conjectured that the same is true for Salem numbers, but is only currently known to be true for Salem numbers of degree 4. Heuristic arguments suggest that almost all degree 6 Salem numbers admit periodic expansions but that a positive proportion of degree 8 Salem numbers do not. In this paper, we investigate the degree 6 case. We present computational methods for searching for families of degree 6 numbers with eventually periodic greedy expansions by studying the co-factors of their expansions. We also prove that the greedy expansions of degree 6 Salem numbers can have arbitrarily large periods. In addition, computational evidence is compiled on the set of degree 6 Salem numbers with $text{trace}(beta) leq 15$. We give examples of numbers with $text{trace}(beta) leq 15$ whose expansions have period and preperiod lengths exceeding $10^{10}$, yet are still eventually periodic.
A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is in general infinitely long and non-repeating, it is known that i
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conject
For regular continued fraction, if a real number $x$ and its rational approximation $p/q$ satisfying $|x-p/q|<1/q^2$, then, after deleting the last integer of the partial quotients of $p/q$, the sequence of the remaining partial quotients is a prefix
Let $f(x)$ be an irreducible polynomial with integer coefficients of degree at least two. Hooley proved that the roots of the congruence equation $f(x)equiv 0mod n$ is uniformly distributed. as a parallel of Hooleys theorem under ideal theoretical se
We obtain an effective analytic formula, with explicit constants, for the number of distinct irreducible factors of a polynomial $f in mathbb{Z}[x]$. We use an explicit version of Mertens theorem for number fields to estimate a related sum over ratio