ﻻ يوجد ملخص باللغة العربية
Van der Waals (vdW) materials offer new ways to assemble artificial electronic media with properties controlled at the design stage, by combining atomically defined layers into interfaces and heterostructures. Their potential for optoelectronics stems from the possibility to tailor the spectral response over a broad range by exploiting interlayer transitions between different compounds with an appropriate band-edge alignment. For the interlayer transitions to be radiative, however, a serious challenge comes from details of the materials --such as lattice mismatch or even a small misalignment of the constituent layers-- that can drastically suppress the electron-photon coupling. The problem was evidenced in recent studies of heterostructures of monolayer transition metal dichalcogenides, whose band edges are located at the K-point of reciprocal space. Here we demonstrate experimentally that the solution to the interlayer coupling problem is to engineer type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the $Gamma$-point, thus avoiding any momentum mismatch. We find that this type of vdW interfaces exhibits radiative optical transition irrespective of lattice constant, rotational/translational alignment of the two layers, or whether the constituent materials are direct or indirect gap semiconductors. The result, which is robust and of general validity, drastically broadens the scope of future optoelectronics device applications based on 2D materials.
The assembly of suitably designed van der Waals (vdW) heterostructures represents a new approach to produce artificial systems with engineered electronic properties. Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces
Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need t
Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the inter
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have l