ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete prepotential for 5d $mathcal{N}=1$ superconformal field theories

132   0   0.0 ( 0 )
 نشر من قبل Sung-Soo Kim
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For any 5d ${cal N}=1$ superconformal field theory, we propose a complete prepotential which reduces to the perturbative prepotential for any of its possible gauge theory realizations, manifests its global symmetry when written in terms of the invariant Coulomb branch parameters, and is valid for the whole parameter region. As concrete examples, we consider $SU(2)$ gauge theories with up to 7 flavors, $Sp(2)$ gauge theories with up to 9 flavors, and $Sp(2)$ gauge theories with 1 antisymmetric tensor and up to 7 flavors, as well as their dual gauge theories.



قيم البحث

اقرأ أيضاً

Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duali ty transformation for G_2 and F_4 SCIs is equivalent to a change of integration variables. Equality of SCIs for SP(2N) and SO(2N+1) group theories is proved in several important special cases. Reduction of SCIs to partition functions of 3d $mathcal{N}=2$ SYM theories with one matter field in the adjoint representation is investigated, corresponding 3d dual partners are found, and some new related hyperbolic beta integrals are conjectured.
We propose a graph-theoretic description to determine and characterize 5d superconformal field theories (SCFTs) that arise as circle reductions of 6d $mathcal{N} = (1,0)$ SCFTs. Each 5d SCFT is captured by a graph, called a Combined Fiber Diagram (CF D). Transitions between CFDs encode mass deformations that trigger flows between SCFTs. In this way, the complete set of descendants of a given 6d theory are obtained from a single marginal CFD. The graphs encode key physical information like the superconformal flavor symmetry and BPS states. As an illustration, we ascertain the aforementioned data associated to all the 5d SCFTs descending from 6d minimal $(E_6, E_6)$ and $(D_k, D_k)$ conformal matter for any $k$. This includes predictions for thus far unknown flavor symmetry enhancements.
We propose 5-brane webs for 5d $mathcal{N}=1$ $G_2$ gauge theories. From a Higgsing of the $SO(7)$ gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure $G_2$ gauge theory u sing an O5-plane or an $widetilde{text{O5}}$-plane. Adding flavors to the 5-brane web for the pure $G_2$ gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d $G_2$ gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.
We obtain the perturbative expansion of the free energy on $S^4$ for four dimensional Lagrangian ${cal N}=2$ superconformal field theories, to all orders in the t Hooft coupling, in the planar limit. We do so by using supersymmetric localization, aft er rewriting the 1-loop factor as an effective action involving an infinite number of single and double trace terms. The answer we obtain is purely combinatorial, and involves a sum over tree graphs. We also apply these methods to the perturbative expansion of the free energy at finite $N$, and to the computation of the vacuum expectation value of the 1/2 BPS circular Wilson loop, which in the planar limit involves a sum over rooted tree graphs.
Building on recent progress in the study of compactifications of $6d$ $(1,0)$ superconformal field theories (SCFTs) on Riemann surfaces to $4d$ $mathcal{N}=1$ theories, we initiate a systematic study of compactifications of $5d$ $mathcal{N}=1$ SCFTs on Riemann surfaces to $3d$ $mathcal{N}=2$ theories. Specifically, we consider the compactification of the so-called rank 1 Seiberg $E_{N_f+1}$ SCFTs on tori and tubes with flux in their global symmetry, and put the resulting $3d$ theories to various consistency checks. These include matching the (usually enhanced) IR symmetry of the $3d$ theories with the one expected from the compactification, given by the commutant of the flux in the global symmetry of the corresponding $5d$ SCFT, and identifying the spectrum of operators and conformal manifolds predicted by the $5d$ picture. As the models we examine are in three dimensions, we encounter novel elements that are not present in compactifications to four dimensions, notably Chern-Simons terms and monopole superpotentials, that play an important role in our construction. The methods used in this paper can also be used for the compactification of any other $5d$ SCFT that has a deformation leading to a $5d$ gauge theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا