ﻻ يوجد ملخص باللغة العربية
This letter shows that optimizing the transmit powers along with optimally designed nonorthogonal pilots can significantly reduce pilot contamination and improve the overall throughput of the uplink multi-cell massive multiple-input multiple-output (MIMO) system as compared to the conventional schemes that use orthogonal pilots. Given the optimized nonorthogonal pilots, power control as a function of the large-scale path-loss can be thought of as a stochastic optimization problem due to the presence of fast fading. This paper advocates a deterministic approach to solve this problem, then further proposes a stochastic optimization method that utilizes successive convex approximation as a benchmark to quantify the performance of the proposed approach. Simulation results reveal significant advantage of using optimized nonorthogonal pilots together with power control to combat pilot contamination.
We consider Internet of Things (IoT) organized on the principles of cell-free massive MIMO. Since the number of things is very large, orthogonal pilots cannot be assigned to all of them even if the things are stationary. This results in an unavoidabl
Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the syste
In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architec
With the help of an in-band full-duplex relay station, it is possible to simultaneously transmit and receive signals from multiple users. The performance of such system can be greatly increased when the relay station is equipped with a large number o
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective ch