ترغب بنشر مسار تعليمي؟ اضغط هنا

Overview of focal plane wavefront sensors to correct for the Low Wind Effect on SUBARU/SCExAO

72   0   0.0 ( 0 )
 نشر من قبل Sebastien Vievard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Low Wind Effect (LWE) refers to a phenomenon that occurs when the wind speed inside a telescope dome drops below $3$m/s creating a temperature gradient near the telescope spider. This produces phase discontinuities in the pupil plane that are not detected by traditional Adaptive Optics (AO) systems such as the pyramid wavefront sensor or the Shack-Hartmann. Considering the pupil as divided in 4 quadrants by regular spiders, the phase discontinuities correspond to piston, tip and tilt aberrations in each quadrant of the pupil. Uncorrected, it strongly decreases the ability of high contrast imaging instruments utilizing coronagraphy to detect exoplanets at small angular separations. Multiple focal plane wavefront sensors are currently being developed and tested on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument at Subaru Telescope: Among them, the Zernike Asymmetric Pupil (ZAP) wavefront sensor already showed on-sky that it could measure the LWE induced aberrations in focal plane images. The Fast and Furious algorithm, using previous deformable mirror commands as temporal phase diversity, showed in simulations its efficiency to improve the wavefront quality in the presence of LWE. A Neural Network algorithm trained with SCExAO telemetry showed promising PSF prediction on-sky. The Linearized Analytic Phase Diversity (LAPD) algorithm is a solution for multi-aperture cophasing and is studied to correct for the LWE aberrations by considering the Subaru Telescope as a 4 sub-aperture instrument. We present the different algorithms, show the latest results and compare their implementation on SCExAO/SUBARU as real-time wavefront sensors for the LWE compensation.



قيم البحث

اقرأ أيضاً

Focal plane wavefront sensing is an elegant solution for wavefront sensing since near-focal images of any source taken by a detector show distortions in the presence of aberrations. Non-Common Path Aberrations and the Low Wind Effect both have the ab ility to limit the achievable contrast of the finest coronagraphs coupled with the best extreme adaptive optics systems. To correct for these aberrations, the Subaru Coronagraphic Extreme Adaptive Optics instrument hosts many focal plane wavefront sensors using detectors as close to the science detector as possible. We present seven of them and compare their implementation and efficiency on SCExAO. This work will be critical for wavefront sensing on next generation of extremely large telescopes that might present similar limitations.
High-contrast imaging (HCI) observations of exoplanets can be limited by the island effect (IE). On the current generation of telescopes, the IE becomes a severe problem when the ground wind speed is below a few meters per second. This is referred to as the low-wind effect (LWE). The LWE severely distorts the point spread function (PSF), significantly lowering the Strehl ratio and degrading the contrast. In this article, we aim to show that the focal-plane wavefront sensing (FPWFS) algorithm, Fast and Furious (F&F), can be used to measure and correct the IE/LWE. We deployed the algorithm on the SCExAO HCI instrument at the Subaru Telescope using the internal near-infrared camera in H-band. We tested F&F with the internal source, and it was deployed on-sky to test its performance with the full end-to-end system and atmospheric turbulence. The performance of the algorithm was evaluated by two metrics based on the PSF quality: 1) the Strehl ratio approximation ($SRA$), and 2) variance of the normalized first Airy ring ($VAR$). Random LWE phase screens with a peak-to-valley wavefront error between 0.4 $mu$m and 2 $mu$m were all corrected to a $SRA$ $>$90% and an $VARlessapprox0.05$. Furthermore, the on-sky results show that F&F is able to improve the PSF quality during very challenging atmospheric conditions (1.3-1.4 seeing at 500 nm). Closed-loop tests show that F&F is able to improve the $VAR$ from 0.27 to 0.03 and therefore significantly improve the symmetry of the PSF. Simultaneous observations of the PSF in the {optical} ($lambda = $ 750 nm, $Delta lambda =$ 50 nm) show that during these tests we were correcting aberrations common to the optical and NIR paths within SCExAO. Going forward, the algorithm is suitable for incorporation into observing modes, which will enable PSFs of higher quality and stability during science observations.
Adaptive optics (AO) is critical in astronomy, optical communications and remote sensing to deal with the rapid blurring caused by the Earths turbulent atmosphere. But current AO systems are limited by their wavefront sensors, which need to be in an optical plane non-common to the science image and are insensitive to certain wavefront-error modes. Here we present a wavefront sensor based on a photonic lantern fibre-mode-converter and deep learning, which can be placed at the same focal plane as the science image, and is optimal for single-mode fibre injection. By measuring the intensities of an array of single-mode outputs, both phase and amplitude information on the incident wavefront can be reconstructed. We demonstrate the concept with simulations and an experimental realisation wherein Zernike wavefront errors are recovered from focal-plane measurements to a precision of $5.1times10^{-3};pi$ radians root-mean-squared-error.
In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as a wavefront sensor to measure and correct the (quasi-)static aberrations, without de dicated wavefront sensing holograms nor modulation by the deformable mirror. The absolute wavefront retrieval is performed with a non-linear algorithm. The focal-plane wavefront sensing (FPWFS) performance of the vAPP and the algorithm are evaluated with numerical simulations, to test various photon and read noise levels, the sensitivity to the 100 lowest Zernike modes and the maximum wavefront error (WFE) that can be accurately estimated in one iteration. We apply these methods to the vAPP within SCExAO, first with the internal source and subsequently on-sky. In idealised simulations we show that for $10^7$ photons the root-mean-square (RMS) WFE can be reduced to $simlambda/1000$, which is 1 nm RMS in the context of the SCExAO system. We find that the maximum WFE that can be corrected in one iteration is $simlambda/8$ RMS or $sim$200 nm RMS (SCExAO). Furthermore, we demonstrate the SCExAO vAPP capabilities by measuring and controlling the lowest 30 Zernike modes with the internal source and on-sky. On-sky, we report a raw contrast improvement of a factor $sim$2 between 2 and 4 $lambda/D$ after 5 iterations of closed-loop correction. When artificially introducing 150 nm RMS WFE, the algorithm corrects it within 5 iterations of closed-loop operation. FPWFS with the vAPPs coronagraphic PSFs is a powerful technique since it integrates coronagraphy and wavefront sensing, eliminating the need for additional probes and thus resulting in a $100%$ science duty cycle and maximum throughput for the target.
High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recen tly, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا