ﻻ يوجد ملخص باللغة العربية
We study generic semilinear Schrodinger systems which may be written in Hamiltonian form. In the presence of a single gauge invariance, the components of a solution may exchange mass between them while preserving the total mass. We exploit this feature to unravel new orbital instability results for ground-states. More precisely, we first derive a general instability criterion and then apply it to some well-known models arising in several physical contexts. In particular, this mass-transfer instability allows us to exhibit $L^2$-subcritical unstable ground-states.
We consider systems of weakly coupled Schrodinger equations with nonconstant potentials and we investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary c
In this work we consider the weakly coupled Schrodinger cubic system [ begin{cases} displaystyle -Delta u_i+lambda_i u_i= mu_i u_i^{3}+ u_isum_{j eq i}b_{ij} u_j^2 u_iin H^1(mathbb{R}^N;mathbb{R}), quad i=1,ldots, d, end{cases} ] where $1leq Nleq 3$
We study the existence of ground states for the coupled Schrodinger system begin{equation} left{begin{array}{lll} displaystyle -Delta u_i+lambda_i u_i= mu_i |u_i|^{2q-2}u_i+sum_{j eq i}b_{ij} |u_j|^q|u_i|^{q-2}u_i u_iin H^1(mathbb{R}^n), quad i=1,
We consider linear stability of steady states of 1(1/2) and 3D Vlasov-Maxwell systems for collisionless plasmas. The linearized systems can be written as separable Hamiltonian systems with constraints. By using a general theory for separable Hamilton
We consider the Schrodinger--Poisson--Newton equations for finite crystals under periodic boundary conditions with one ion per cell of a lattice. The electron field is described by the $N$-particle Schrodinger equation with antisymmetric wave functio