ترغب بنشر مسار تعليمي؟ اضغط هنا

A Carleson problem for the Boussinesq operator

151   0   0.0 ( 0 )
 نشر من قبل Dan Li
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, Theorems 1.1- 1.2 show that the Boussinesq operator $mathcal{B}_tf$ converges pointwise to its initial data $fin H^s(mathbb{R})$ as $tto 0$ provided $sgeqfrac{1}{4}$ -- more precisely -- on the one hand, by constructing a counterexample in $mathbb{R}$ we discover that the optimal convergence index $s_{c,1}=frac14$; on the other hand, we find that the Hausdorff dimension of the disconvergence set for $mathcal{B}_tf$ is begin{align*} alpha_{1,mathcal{B}}(s)&=begin{cases} 1-2s& text{as} frac{1}{4}leq sleqfrac{1}{2}; 1 & text{as} 0<s<frac{1}{4}. end{cases} end{align*} Moreover, Theorem 1.3 presents a higher dimensional lift of Theorems 1.1- 1.2 under $f$ being radial.



قيم البحث

اقرأ أيضاً

We study the Walsh model of a certain maximal truncation of Carlesons operator, related to the Return Times Theorem from Ergodic Theory.
89 - Benoit F. Sehba 2020
We prove Carleson embeddings for Bergman-Orlicz spaces of the unit ball that extend the lower triangle estimates for the usual Bergman spaces.
366 - Jie Xiao 2007
Let $mu$ be a nonnegative Borel measure on the open unit disk $mathbb{D}subsetmathbb{C}$. This note shows how to decide that the Mobius invariant space $mathcal{Q}_p$, covering $mathcal{BMOA}$ and $mathcal{B}$, is boundedly (resp., compactly) embedde d in the quadratic tent-type space $T^infty_p(mu)$. Interestingly, the embedding result can be used to determine the boundedness (resp., the compactness) of the Volterra-type and multiplication operators on $mathcal{Q}_p$.
In this paper we characterize off-diagonal Carleson embeddings for both Hardy-Orlicz spaces and Bergman-Orlicz spaces of the upper-half plane. We use these results to obtain embedding relations and pointwise multipliers between these spaces.
In this note, we obtain a full characterization of radial Carleson measures for the Hilbert-Hardy space on tube domains over symmetric cones. For large derivatives, we also obtain a full characterization of the measures for which the corresponding em bedding operator is continuous. Restricting to the case of light cones of dimension three, we prove that by freezing one or two variables, the problem of embedding derivatives of the Hilbert-Hardy space into Lebesgue spaces reduces to the characterization of Carleson measures for Hilbert-Bergman spaces of the upper-half plane or the product of two upper-half planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا