ﻻ يوجد ملخص باللغة العربية
We establish non-Hermitian topological mechanics in one dimensional (1D) and two dimensional (2D) lattices consisting of mass points connected by meta-beams that lead to odd elasticity. Extended from the non-Hermitian skin effect in 1D systems, we demonstrate this effect in 2D lattices in which bulk elastic waves exponentially localize in both lattice directions. We clarify a proper definition of Berry phase in non-Hermitian systems, with which we characterize the lattice topology and show the emergence of topological modes on lattice boundaries. The eigenfrequencies of topological modes are complex due to the breaking of $mathcal{PT}$-symmetry and the excitations could exponentially grow in time in the damped regime. Besides the bulk modes, additional localized modes arise in the bulk band and they are easily affected by perturbations. These distinguishing features may manifest themselves in various active materials and biological systems.
In equilibrium liquid crystals, chirality leads to a variety of spectacular three-dimensional structures, but chiral and achiral phases with the same broken continuous symmetries have identical long-time, large-scale dynamics. In this paper, we demon
Deformations of conventional solids are described via elasticity, a classical field theory whose form is constrained by translational and rotational symmetries. However, flexible metamaterials often contain an additional approximate symmetry due to t
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp
The breakdown of the conventional bulk-boundary correspondence due to non-Hermitian skin effect leads to the non-Bloch bulk-boundary correspondence in the generalized Brillouin zone. Inspired by the case of the equivalence between the non-reciprocal
Flexible mechanical metamaterials possess repeating structural motifs that imbue them with novel, exciting properties including programmability, anomalous elastic moduli and nonlinear and robust response. We address such structures via micromorphic c