ﻻ يوجد ملخص باللغة العربية
Upcoming million-star spectroscopic surveys have the potential to revolutionize our view of the formation and chemical evolution of the Milky Way. Realizing this potential requires automated approaches to optimize estimates of stellar properties, such as chemical element abundances, from the spectra. The volume and quality of the observations strongly motivate that these approaches should be data-driven. With this in mind, we introduce SSSpaNG: a data-driven non-Gaussian Process model of stellar spectra. We demonstrate the capabilities of SSSpaNG using a sample of APOGEE red clump stars, whose model parameters we infer via Gibbs sampling. Pooling information between stars to infer their covariance, we permit clear identification of the correlations between spectral pixels. Harnessing these correlations, we infer the true spectrum of each star, inpainting missing regions and denoising by a factor of at least 2 for stars with signal-to-noise of ~20. As we marginalize over the covariance matrix of the spectra, the effective prior on these true spectra is non-Gaussian and sparsifying, favouring typically small but occasionally large excursions from the mean. The high-fidelity inferred spectra produced will enable improved elemental abundance measurements for individual stars. Our model also allows us to quantify the information gained by observing portions of a stars spectrum, and thereby define the most mutually informative spectral regions. Using 25 windows centred on elemental absorption lines, we demonstrate that the iron-peak and alpha-process elements are particularly mutually informative for these spectra, and that the majority of information about a target window is contained in the 10-or-so most informative windows. Such mutual-information estimates have the potential to inform models of nucleosynthetic yields and the design of future observations.
In this note we present the starry_process code, which implements an interpretable Gaussian process (GP) for modeling variability in stellar light curves. As dark starspots rotate in and out of view, the total flux received from a distant star will c
New spectroscopic surveys offer the promise of consistent stellar parameters and abundances (stellar labels) for hundreds of thousands of stars in the Milky Way: this poses a formidable spectral modeling challenge. In many cases, there is a sub-set o
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) started median-resolution spectroscopic (MRS, R$sim$7500) survey since October 2018. The main scientific goals of MRS, including binary stars, pulsators, and other variable stars
The Gaia mission is a magnitude-limited whole-sky survey that collects an impressive quantity of astrometric, spectro-photometric and spectroscopic data. Among all the on-board instruments, the Radial Velocity Spectrometer (RVS) produces millions of
We present near-infrared (0.8-1.8 $mu$m) spectra of 105 bright (${m_{J}}$ $<$ 10) stars observed with the low resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment (CIBER). As our observations are performed above the earth