ﻻ يوجد ملخص باللغة العربية
Simulations of ultralight, $sim 10^{-22},rm eV$, bosonic dark matter exhibit rich wave-like structure, including a soliton core within a surrounding halo that continuously self-interferes on the de Broglie scale. We show here that as an inherent consequence, the soliton undergoes a confined random walk at the base of the halo potential. This is significant for the fate of the ancient central star cluster in Eridanus II, as the agitated soliton gravitationally shakes the star cluster in and out of the soliton on a time scale of $sim 100,rm Myr$, so complete tidal disruption of the star cluster can occur within $sim 1,rm Gyr$. This destructive effect can be mitigated by tidal stripping of the halo of Eridanus II, thereby reducing the agitation, depending on its orbit around the Milky Way. Our simulations show the Milky Way tide affects the halo much more than the soliton, so the star cluster in Eridanus II can survive for over $5,rm Gyr$ within the soliton if it formed after significant halo stripping.
For idealized (spherical, smooth) dark matter halos described by single-parameter density profiles (such as the NFW profile) there exists a one-to-one mapping between the energy of the halo and the scale radius of its density profile. The energy ther
A Fuzzy Dark Matter (FDM) halo consists of a soliton core close to the center and an NFW-like density profile in the outer region. Previous investigations found that the soliton core exhibits temporal oscillations and random walk excursions around th
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensi
We extend the random-walk model of Vitvitska et al. for predicting the spins of dark matter halos from their merger histories. Using updated merger rates, orbital parameter distributions, and N-body constraints we show that this model can accurately
Starting from the evidence that dark matter indeed exists and permeates the entire cosmos, various bounds on its properties can be estimated. Beginning with the cosmic microwave background and large scale structure, we summarize bounds on the ultrali