ترغب بنشر مسار تعليمي؟ اضغط هنا

The CASA software for radio astronomy: status update from ADASS 2019

78   0   0.0 ( 0 )
 نشر من قبل Bjorn Emonts
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Emonts




اسأل ChatGPT حول البحث

CASA, the Common Astronomy Software Applications package, is the primary data processing software for the Atacama Large Millimeter/submillimeter Array (ALMA) and NSFs Karl G. Jansky Very Large Array (VLA), and is frequently used also for other radio telescopes. The CASA software can process data from both single-dish and aperture-synthesis telescopes, and one of its core functionalities is to support the data reduction and imaging pipelines for ALMA, VLA and the VLA Sky Survey (VLASS). CASA has recently undergone several exciting new developments, including an increased flexibility in Python (CASA 6), support of Very Long Baseline Interferometry (VLBI), performance gains through parallel imaging, data visualization with the new Cube Analysis Rendering Tool for Astronomy (CARTA), enhanced reliability and testing, and modernized documentation. These proceedings of the 2019 Astronomical Data Analysis Software & Systems (ADASS) conference give an update of the CASA project, and detail how these new developments will enhance user experience of CASA.



قيم البحث

اقرأ أيضاً

The Low Frequency Array (LOFAR) is a new generation of electronic radio telescope based on aperture array technology and working in the frequency range of 30-240 MHz. The telescope is being developed by ASTRON, and currently being rolled-out across t he Netherlands and other countries in Europe. The plan is to build at least 36 stations in the Netherlands (with baseline lengths of up to 100 km), 5 stations in Germany, and 1 station in each of Sweden, France and the UK. With baseline lengths of up to 2000 km, sub-arcsecond resolution will be possible at the highest frequencies. The Key Science Projects being addressed by the project include: deep, wide-field cosmological surveys, transients, the epoch of re-ionisation and cosmic ray studies. We present the current status of the project, including the development of the super-core in Exloo and the completion of the first 3 stations. First fringes from these stations is also presented.
PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce th e LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their inter- action with LOFAR images, concluding with the current status of PySE and its future development.
57 - M. Backes 2018
Astronomy plays a major role in the scientific landscape of Namibia and Southern Africa. Considerable progress has been achieved scientifically as well as in terms of human capacity development in the field. In all wavelength regimes accessible with ground-based instruments, the largest of those instruments are situated in Southern Africa: MeerKAT, the Southern African Large Telescope, and the High Energy Stereoscopic System. Because of the excellent observing conditions from Namibian soil, further large-scale projects such as the Cherenkov Telescope Array considered sites in Namibia and the Africa Millimetre Telescope will eventually be built there. Against this background, the current situation of astronomical research and education in Namibia is reviewed, focusing on optical, radio and gamma-ray astronomy and also including smaller scale projects. Further, the role of astronomy, with particular focus on developmental aspects in the African context is outlined and the progress in human capacity development is summarized.
A test of a cornerstone of general relativity, the gravitational redshift effect, is currently being conducted with the RadioAstron spacecraft, which is on a highly eccentric orbit around Earth. Using ground radio telescopes to record the spacecraft signal, synchronized to its ultra-stable on-board H-maser, we can probe the varying flow of time on board with unprecedented accuracy. The observations performed so far, currently being analyzed, have already allowed us to measure the effect with a relative accuracy of $4times10^{-4}$. We expect to reach $2.5times10^{-5}$ with additional observations in 2016, an improvement of almost a magnitude over the 40-year old result of the GP-A mission.
The InfraRed Imaging Spectrograph (IRIS) is the first-light client instrument for the Narrow Field Infrared Adaptive Optics System (NFIRAOS) on the Thirty Meter Telescope (TMT). Now approaching the end of its final design phase, we provide an overvie w of the instrument control software. The design is challenging since IRIS has interfaces with many systems at different stages of development (e.g., NFIRAOS, telescope control system, observatory sequencers), and will be built using the newly-developed TMT Common Software (CSW), which provides framework code (Java/Scala), and services (e.g., commands, telemetry). Lower-level software will be written in a combination of Java and C/C++ to communicate with hardware, such as motion controllers and infrared detectors. The overall architecture and philosophy of the IRIS software is presented, as well as a summary of the individual software components and their interactions with other systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا