ﻻ يوجد ملخص باللغة العربية
Starting from several copies of bipartite noisy entangled states, we design a global and optimal local measurement-based protocol in one- and two-dimensional lattices by which any two or more prefix sites can be connected via entanglement. Production of bipartite as well as multipartite entangled states in a network is verified in a device independent way through the violation of Bell inequalities with two settings per site and with continuous range of settings. We also note that if the parties refuse to perform local measurements, the entanglement distribution scheme fails. We obtain critical values of noise allowed in the initial state so that the resulting output state show nonlocal correlation in different networks with arbitrary number of connections. We report that by employing our method, it is possible to create a Bell-violating multipartite entangled state from non-Bell violating bipartite states in an one-dimensional lattice with minimal coordination number being six. Such a feature of superadditivity in violation can also be observed in a triangular two dimensional lattice but not in a square lattice.
Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fix
The network structure offers in principle the possibility for novel forms of quantum nonlocal correlations, that are proper to networks and cannot be traced back to standard quantum Bell nonlocality. Here we define a notion of genuine network quantum
Networks have advanced the study of nonlocality beyond Bells theorem. Here, we introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources. Showcasing that t
We show that for all $nge3$, an example of an $n$-partite quantum correlation that is not genuinely multipartite nonlocal but rather exhibiting anonymous nonlocality, that is, nonlocal but biseparable with respect to all bipartitions, can be obtained
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuabl