ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic enumeration of lonesum matrices

138   0   0.0 ( 0 )
 نشر من قبل Erik Lundberg
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide bivariate asymptotics for the poly-Bernoulli numbers, a combinatorial array that enumerates lonesum matrices, using the methods of Analytic Combinatorics in Several Variables (ACSV). For the diagonal asymptotic (i.e., for the special case of square lonesum matrices) we present an alternative proof based on Parsevals identity. In addition, we provide an application in Algebraic Statistics on the asymptotic ML-degree of the bivariate multinomial missing data problem, and we strengthen an existing result on asymptotic enumeration of permutations having a specified excedance set.

قيم البحث

اقرأ أيضاً

Let svec = (s_1,...,s_m) and tvec = (t_1,...,t_n) be vectors of nonnegative integer-valued functions of m,n with equal sum S = sum_{i=1}^m s_i = sum_{j=1}^n t_j. Let M(svec,tvec) be the number of m*n matrices with nonnegative integer entries such tha t the i-th row has row sum s_i and the j-th column has column sum t_j for all i,j. Such matrices occur in many different settings, an important example being the contingency tables (also called frequency tables) important in statistics. Define s=max_i s_i and t=max_j t_j. Previous work has established the asymptotic value of M(svec,tvec) as m,ntoinfty with s and t bounded (various authors independently, 1971-1974), and when svec,tvec are constant vectors with m/n,n/m,s/n >= c/log n for sufficiently large (Canfield and McKay, 2007). In this paper we extend the sparse range to the case st=o(S^(2/3)). The proof in part follows a previous asymptotic enumeration of 0-1 matrices under the same conditions (Greenhill, McKay and Wang, 2006). We also generalise the enumeration to matrices over any subset of the nonnegative integers that includes 0 and 1.
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In this paper, we approach the corresponding question for undirected Cayley graphs. The situation is complicated by the fact that there are two infinite families of groups that do not admit any graphical regular representation (GRR). The strategy for digraphs involved analysing separately the cases where the regular group $R$ has a nontrivial proper normal subgroup $N$ with the property that the automorphism group of the digraph fixes each $N$-coset setwise, and the cases where it does not. In this paper, we deal with undirected graphs in the case where the regular group has such a nontrivial proper normal subgroup.
Building on previous work by the present authors [Proc. London Math. Soc. 119(2):358--378, 2019], we obtain a precise asymptotic estimate for the number $g_n$ of labelled 4-regular planar graphs. Our estimate is of the form $g_n sim gcdot n^{-7/2} rh o^{-n} n!$, where $g>0$ is a constant and $rho approx 0.24377$ is the radius of convergence of the generating function $sum_{nge 0}g_n x^n/n!$, and conforms to the universal pattern obtained previously in the enumeration of planar graphs. In addition to analytic methods, our solution needs intensive use of computer algebra in order to work with large systems of polynomials equations. In particular, we use evaluation and Lagrange interpolation in order to compute resultants of multivariate polynomials. We also obtain asymptotic estimates for the number of 2- and 3-connected 4-regular planar graphs, and for the number of 4-regular simple maps, both connected and 2-connected.
Using a result of Gessel and Reutenauer, we find a simple formula for the number of cyclic permutations with a given descent set, by expressing it in terms of ordinary descent numbers (i.e., those counting all permutations with a given descent set). We then use this formula to show that, for almost all sets $I subseteq [n-1]$, the fraction of size-$n$ permutations with descent set $I$ which are $n$-cycles is asymptotically $1/n$. As a special case, we recover a result of Stanley for alternating cycles. We also use our formula to count the cycles that do not have two consecutive descents.
For $ngeq 3$, let $r=r(n)geq 3$ be an integer. A hypergraph is $r$-uniform if each edge is a set of $r$ vertices, and is said to be linear if two edges intersect in at most one vertex. In this paper, the number of linear $r$-uniform hypergraphs on $n toinfty$ vertices is determined asymptotically when the number of edges is $m(n)=o(r^{-3}n^{ frac32})$. As one application, we find the probability of linearity for the independent-edge model of random $r$-uniform hypergraph when the expected number of edges is $o(r^{-3}n^{ frac32})$. We also find the probability that a random $r$-uniform linear hypergraph with a given number of edges contains a given subhypergraph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا