ﻻ يوجد ملخص باللغة العربية
LHC $tbar{t}$ data have the potential to provide constraints on the gluon distribution, especially at high $x$, with both ATLAS and CMS performing differential measurements. Recently, CMS has measured double-differential $tbar{t}$ distributions at 8 TeV. In this paper we examine the impact of this data set on the gluon distribution. To that end we develop novel, double-differential NNLO predictions for that data. No significant impact is found when the CMS data is added to the CT14HERA2 global PDF fit, due to the larger impact of the inclusive jet data from both the Tevatron and the LHC. If the jet data are removed from the fit, then an impact is observed. If the CMS data is scaled by a larger weight, representing the greater statistical power of the jet data, a roughly equal impact on the gluon distribution is observed for the $tbar{t}$ as for the inclusive jet data. For data samples with higher integrated luminosity at 13 TeV, a more significant impact of the double-differential $tbar{t}$ data may be observed.
Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations
Motivated by the desire to understand the nucleon mass structure in terms of light-cone distributions, we introduce the twist-four parton distribution function $F(x)$ whose first moment is the gluon condensate in the nucleon. We present the equation
We present two equivalent consistency checks of the momentum sum rule for double parton distributions and show the importance of the inclusion of the so-called inhomogeneous term in order to preserve correct longitudinal momentum correlations. We fur
We write down the four-dimensional fully differential decay distribution for the top quark decay $t to Wb to ell u b$. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional
We present a systematic investigation of jet production at hadron colliders from a phenomenological point of view, with the dual aim of providing a validation of theoretical calculations and guidance to future determinations of parton distributions (