ترغب بنشر مسار تعليمي؟ اضغط هنا

Computation of Kontsevich Weights of Connection and Curvature Graphs for Symplectic Poisson Structures

174   0   0.0 ( 0 )
 نشر من قبل Nima Moshayedi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a detailed explicit computation of weights of Kontsevich graphs which arise from connection and curvature terms within the globalization picture for the special case of symplectic manifolds. We will show how the weights for the curvature graphs can be explicitly expressed in terms of the hypergeometric function as well as by a much simpler formula combining it with the explicit expression for the weights of its underlined connection graphs. Moreover, we consider the case of a cotangent bundle, which will simplify the curvature expression significantly.



قيم البحث

اقرأ أيضاً

384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
161 - Gehao Wang 2017
The Brezin-Gross-Witten (BGW) model is one of the basic examples in the class of non-eigenvalue unitary matrix models. The generalized BGW tau-function $tau_N$ was constructed from a one parametric deformation of the original BGW model using the gene ralized Kontsevich model representation. It is a tau-function of the KdV hierarchy for any value of $Ninmathbb C$, where the case $N=0$ reduces to the original BGW tau-function. In this paper, we present a bosonic representation of $tau_N$ in terms of the $W_{1+infty}$ operators that preserves the KP integrability. This allows us to establish a connection between the (generalized) BGW and Kontsevich-Witten tau-functions using $GL(infty)$ operators, both considered as the basic building blocks in the theory of matrix models and partition functions.
We propose a generalization of quantization as a categorical way. For a fixed Poisson algebra quantization categories are defined as subcategories of R-module category with the structure of classical limits. We construct the generalized quantization categories including matrix regularization, strict deformation quantization, prequantization, and Poisson enveloping algebra, respectively. It is shown that the categories of strict deformation quantization, prequantization, and matrix regularization with some conditions are categorical equivalence. On the other hand, the categories of Poisson enveloping algebra is not equivalent to the other categories.
We construct a dynamical quantization for contact manifolds in terms of a flat connection acting on a Hilbert tractor bundle. We show that this contact quantization, which is independent of the choice of contact form, can be obtained by quantizing th e Reeb dynamics of an ambient strict contact manifold equivariantly with respect to an R+-action. The contact quantization further determines a certain contact tractor connection whose parallel sections determine a distinguished choice of Reeb dynamics and their quantization. This relationship relies on tractor constructions from parabolic geometries and mirrors the tight relationship between Einstein metrics and conformal geometries. Finally, we construct in detail the dynamical quantization of the unique tight contact structure on the 3-sphere, where the Holstein-Primakoff transformation makes a surprising appearance.
A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J. P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their const ruction was later generalized to all genera by J. P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا