ﻻ يوجد ملخص باللغة العربية
Using a sample of $simeq$144,000 quasars from the Sloan Digital Sky Survey data release 14 we investigate the outflow properties, evident both in absorption and emission, of high-ionization Broad Absorption Line (BAL) and non-BAL quasars with redshifts 1.6 $lesssim z leq$ 3.5 and luminosities 45.3 $< log_{10}(L_{bol}) < $ 48.2 erg s$^{-1}$. Key to the investigation is a continuum and emission-line reconstruction scheme, based on mean-field independent component analysis, that allows the kinematic properties of the CIV$lambda$1550 emission line to be compared directly for both non-BAL and BAL quasars. CIV-emission blueshift and equivalent-width (EW) measurements are thus available for both populations. Comparisons of the emission-line and BAL-trough properties reveal strong systematic correlations between the emission and absorption properties. The dependence of quantitative outflow indicators on physical properties such as quasar luminosity and luminosity relative to Eddington-luminosity are also shown to be essentially identical for the BAL and non-BAL populations. There is an absence of BALs in quasars with the hardest spectral energy distributions (SEDs), revealed by the presence of strong HeII$lambda$1640 emission, large CIV$lambda$1550-emission EW and no measurable blueshift. In the remainder of the CIV-emission blueshift versus EW space, BAL and non-BAL quasars are present at all locations; for every BAL-quasar it is possible to identify non-BAL quasars with the same emission-line outflow properties and SED-hardness. The co-location of BAL and non-BAL quasars as a function of emission-line outflow and physical properties is the key result of our investigation, demonstrating that (high-ionization) BALs and non-BALs represent different views of the same underlying quasar population.
We investigated the rest-frame $approx$0.1-5 year X-ray variability properties of an unbiased and uniformly selected sample of 24 BAL and 35 mini-BAL quasars, making it the largest representative sample used to investigate such variability. We find t
We report on an X-ray and optical/UV study of eight Broad Absorption Line (BAL) to non-BAL transforming quasars at $z,approx,$1.7-2.2 over 0.29-4.95 rest-frame years with at least three spectroscopic epochs for each quasar from the SDSS, BOSS, $Gemin
Studies of radio-loud (RL) broad absorption line (BAL) quasars indicate that popular orientation-based BAL models fail to account for all observations. Are these results extendable to radio-quiet (RQ) BAL quasars? Comparisons of RL and RQ BAL quasars
Some fraction of narrow absorption lines are physically associated to the quasar/host-galaxy materials (i.e., intrinsic NALs) like those of BALs and mini-BALs. The relation between these three types of absorption lines has not been understood yet, ho
We have selected a sample of broad absorption line (BAL) quasars which show significant radio variations, indicating the presence of polar BAL outflows. We obtained snapshot XMM observations of four polar BAL QSOs, to check whether strong X-ray absor