ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter symmetry in perturbed GUE corners process and reflected drifted Brownian motions

70   0   0.0 ( 0 )
 نشر من قبل Leonid Petrov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The perturbed GUE corners ensemble is the joint distribution of eigenvalues of all principal submatrices of a matrix $G+mathrm{diag}(mathbf{a})$, where $G$ is the random matrix from the Gaussian Unitary Ensemble (GUE), and $mathrm{diag}(mathbf{a})$ is a fixed diagonal matrix. We introduce Markov transitions based on exponential jumps of eigenvalues, and show that their successive application is equivalent in distribution to a deterministic shift of the matrix. This result also leads to a new distributional symmetry for a family of reflected Brownian motions with drifts coming from an arithmetic progression. The construction we present may be viewed as a random matrix analogue of the recent results of the first author and Axel Saenz (arXiv:1907.09155 [math.PR]).



قيم البحث

اقرأ أيضاً

We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additi ve rank one perturbations of the GOE/GUE/GSE random matrices. In the infinite-dimensional limit, we arrive at a one-parameter family of random Feynman-Kac type semigroups, which features the stochastic Airy semigroup of Gorin and Shkolnikov [13] as an extreme case. Our analysis also provides Feynman-Kac formulas for the spiked stochastic Airy operators, introduced by Bloemendal and Virag [6]. The Feynman-Kac formulas involve functionals of a reflected Brownian motion and its local times, thus, allowing to study the limiting operators by tools of stochastic analysis. We derive a first result in this direction by obtaining a new distributional identity for a reflected Brownian bridge conditioned on its local time at zero.
281 - Ryoki Fukushima 2009
We consider the annealed asymptotics for the survival probability of Brownian motion among randomly distributed traps. The configuration of the traps is given by independent displacements of the lattice points. We determine the long time asymptotics of the logarithm of the survival probability up to a multiplicative constant. As applications, we show the Lifshitz tail effect of the density of states of the associated random Schr{o}dinger operator and derive a quantitative estimate for the strength of intermittency in the Parabolic Anderson problem.
172 - Dong Cao , Shanjian Tang 2019
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e stimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
In this note we consider generalized diffusion equations in which the diffusivity coefficient is not necessarily constant in time, but instead it solves a nonlinear fractional differential equation involving fractional Riemann-Liouville time-derivati ve. Our main contribution is to highlight the link between these generalised equations and fractional Brownian motion (fBm). In particular, we investigate the governing equation of fBm and show that its diffusion coefficient must satisfy an additive evolutive fractional equation. We derive in a similar way the governing equation of the iterated fractional Brownian motion.
This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the $n$-th Brownian motion is reflected from the Brownian motion with label $n-1$. This model belongs to the Kar dar-Parisi-Zhang (KPZ) universality class. In fact, because of the singular interaction, many universal properties can be established with rigor. They depend on the choice of initial conditions. Discussion addresses packed and periodic initial conditions, stationary initial conditions, and mixtures thereof. The suitably scaled spatial process will be proven to converge to an Airy process in the long time limit. A chapter on determinantal random fields and another one on Airy processes are added to have the notes self-contained. This book serves as an introduction to the KPZ universality class, illustrating the main concepts by means of a single model only. It will be of interest to readers from interacting diffusion processes and non-equilibrium statistical mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا