ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions

149   0   0.0 ( 0 )
 نشر من قبل Lomara Maksimova
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of convection in the gas-dust accretion disk around a young star is studied. The evolution of a Keplerian disk is modeled using the Pringle equation, which describes the time variations of the surface density under the action of turbulent viscosity. The distributions of the density and temperature in the polar directions are computed simultaneously in the approximation that the disk is hydrostatically stable. The computations of the vertical structure of the disk take into account heating by stellar radiation, interstellar radiation, and viscous heating. The main factor governing evolution of the disk in this model is the dependence of the viscosity coefficient on the radius of the disk. The computations of this coefficient take into account the background viscosity providing the continuous accretion of the gas and the convective viscosity, which depends on the parameters of the convection at a given radius. The results of computations of the global evolution and morphology of the disk obtained in this approach are presented. It is shown that, in the adopted model, the accretion has burst-like character: after the inner part of the disk ( R < 3 AU) is filled with matter, this material is relatively fast discharged onto the star, after which the process is repeated. Our results may be useful for explaining the activity of young FU Ori and EX Lup objects. It is concluded that convection may be one of the mechanisms responsible for the non-steady pattern of accretion in protostellar disks.



قيم البحث

اقرأ أيضاً

We model the spectral energy distributions (SEDs) of 23 protoplanetary disks in the Taurus-Auriga star-forming region using detailed disk models and a Bayesian approach. This is made possible by combining these models with artificial neural networks to drastically speed up their performance. Such a setup allows us to confront $alpha$-disk models with observations while accounting for several uncertainties and degeneracies. Our results yield high viscosities and accretion rates for many sources, which is not consistent with recent measurements of low turbulence levels in disks. This inconsistency could imply that viscosity is not the main mechanism for angular momentum transport in disks, and that alternatives such as disk winds play an important role in this process. We also find that our SED-derived disk masses are systematically higher than those obtained solely from (sub)mm fluxes, suggesting that part of the disk emission could still be optically thick at (sub)mm wavelengths. This effect is particularly relevant for disk population studies and alleviates previous observational tensions between the masses of protoplanetary disks and exoplanetary systems.
We present a self-consistent model of a protoplanetary disk: ANDES (AccretioN disk with Dust Evolution and Sedimentation). ANDES is based on a flexible and extendable modular structure that includes 1) a 1+1D frequency-dependent continuum radiative t ransfer module, 2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes surface reactions, 3) a module to calculate the gas thermal energy balance, and 4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains to the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R < 50 AU) and lower in the outer disk (R > 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.
We present a study of the evolution of the inner few astronomical units of protoplanetary disks around low-mass stars. We consider nearby stellar groups with ages spanning from 1 to 11 Myr, distributed into four age bins. Combining PANSTARSS photomet ry with spectral types, we derive the reddening consistently for each star, which we use (1) to measure the excess emission above the photosphere with a new indicator of IR excess and (2) to estimate the mass accretion rate ($dot{M}$) from the equivalent width of the H$alpha$ line. Using the observed decay of $dot{M}$ as a constrain to fix the initial conditions and the viscosity parameter of viscous evolutionary models, we use approximate Bayesian modeling to infer the dust properties that produce the observed decrease of the IR excess with age, in the range between 4.5 and $24,mu$m. We calculate an extensive grid of irradiated disk models with a two-layered wall to emulate a curved dust inner edge and obtain the vertical structure consistent with the surface density predicted by viscous evolution. We find that the median dust depletion in the disk upper layers is $epsilon sim 3 times 10^{-3}$ at 1.5 Myr, consistent with previous studies, and it decreases to $epsilon sim 3 times 10^{-4}$ by 7.5 Myr. We include photoevaporation in a simple model of the disk evolution and find that a photoevaporative wind mass-loss rate of $sim 1 -3 times 10 ^{-9} , M_{odot}yr^{-1}$ agrees with the decrease of the disk fraction with age reasonably well. The models show the inward evolution of the H$_2$O and CO snowlines.
Context. Characterizing the evolution of protoplanetary disks is necessary to improve our understanding of planet formation. Constraints on both dust and gas are needed to determine the dominant disk dissipation mechanisms. Aims. We aim to compare th e disk dust masses in the Chamaeleon II (Cha II) star-forming region with other regions with ages between 1 and 10Myr. Methods. We use ALMA band 6 observations (1.3 mm) to survey 29 protoplanetary disks in Cha II. Dust mass estimates are derived from the continuum data. Results. Out of our initial sample of 29 disks, we detect 22 sources in the continuum, 10 in 12CO, 3 in 13CO, and none in C18O (J=2-1). Additionally, we detect two companion candidates in the continuum and 12CO emission. Most disk dust masses are lower than 10Mearth, assuming thermal emission from optically thin dust. We compare consistent estimations of the distributions of the disk dust mass and the disk-to-stellar mass ratios in Cha II with six other low mass and isolated star-forming regions in the age range of 1-10Myr: Upper Sco, CrA, IC 348, Cha I, Lupus, and Taurus. When comparing the dust-to-stellar mass ratio, we find that the masses of disks in Cha II are statistically different from those in Upper Sco and Taurus, and we confirm that disks in Upper Sco, the oldest region of the sample, are statistically less massive than in all other regions. Performing a second statistical test of the dust mass distributions from similar mass bins, we find no statistical differences between these regions and Cha II. Conclusions. We interpret these trends, most simply, as a sign of decline in the disk dust masses with time or dust evolution. Different global initial conditions in star-forming regions may also play a role, but their impact on the properties of a disk population is difficult to isolate in star-forming regions lacking nearby massive stars.
We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for evidence of gas in the inner disk in HST ACS/SBC spectra, and to probe the accretion flows onto the star using H$alpha$ and He I $lambda$10830 in spectra obtained at the Magellan and SOAR telescopes. At the critical age of 5 Myr, the targets are at different stages of disk evolution. One of our targets is clearly accreting, as shown by redshifted absorption at free-fall velocities in the He I line and wide wings in H$alpha$; however, a marginal detection of FUV H$_2$ suggests that little gas is present in the inner disk, although the spectral energy distribution indicates that small dust still remains close to the star. Another target is surrounded by a transitional disk, with an inner cavity in which little sub-micron dust remains. Still, the inner disk shows substantial amounts of gas, accreting onto the star at a probably low, but uncertain rate. The third target lacks both a He I line or FUV emission, consistent with no accretion or inner gas disk; its very weak IR excess is consistent with a debris disk. Different processes occurring in targets with ages close to the disk dispersal time suggest that the end of accretion phase is reached in diverse ways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا