ﻻ يوجد ملخص باللغة العربية
The role of convection in the gas-dust accretion disk around a young star is studied. The evolution of a Keplerian disk is modeled using the Pringle equation, which describes the time variations of the surface density under the action of turbulent viscosity. The distributions of the density and temperature in the polar directions are computed simultaneously in the approximation that the disk is hydrostatically stable. The computations of the vertical structure of the disk take into account heating by stellar radiation, interstellar radiation, and viscous heating. The main factor governing evolution of the disk in this model is the dependence of the viscosity coefficient on the radius of the disk. The computations of this coefficient take into account the background viscosity providing the continuous accretion of the gas and the convective viscosity, which depends on the parameters of the convection at a given radius. The results of computations of the global evolution and morphology of the disk obtained in this approach are presented. It is shown that, in the adopted model, the accretion has burst-like character: after the inner part of the disk ( R < 3 AU) is filled with matter, this material is relatively fast discharged onto the star, after which the process is repeated. Our results may be useful for explaining the activity of young FU Ori and EX Lup objects. It is concluded that convection may be one of the mechanisms responsible for the non-steady pattern of accretion in protostellar disks.
We model the spectral energy distributions (SEDs) of 23 protoplanetary disks in the Taurus-Auriga star-forming region using detailed disk models and a Bayesian approach. This is made possible by combining these models with artificial neural networks
We present a self-consistent model of a protoplanetary disk: ANDES (AccretioN disk with Dust Evolution and Sedimentation). ANDES is based on a flexible and extendable modular structure that includes 1) a 1+1D frequency-dependent continuum radiative t
We present a study of the evolution of the inner few astronomical units of protoplanetary disks around low-mass stars. We consider nearby stellar groups with ages spanning from 1 to 11 Myr, distributed into four age bins. Combining PANSTARSS photomet
Context. Characterizing the evolution of protoplanetary disks is necessary to improve our understanding of planet formation. Constraints on both dust and gas are needed to determine the dominant disk dissipation mechanisms. Aims. We aim to compare th
We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for