ﻻ يوجد ملخص باللغة العربية
The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculations of electroweak matrix elements in one and few nucleon systems. There were a number of significant challenges in determining $g_A$, notably the notorious exponentially-bad signal-to-noise problem and the requirement for hundreds of thousands of stochastic samples, that rendered this goal more difficult to obtain than originally thought. I will describe the use of an unconventional computation method, coupled with ludicrously fast GPU code, access to publicly available lattice QCD configurations from MILC and access to leadership computing that have allowed these challenges to be overcome resulting in a determination of $g_A$ with 1% precision and all sources of systematic uncertainty controlled. I will discuss the implications of these results for the convergence of $SU(2)$ Chiral Perturbation theory for nucleons, as well as prospects for further improvements to $g_A$ (sub-percent precision, for which we have preliminary results) which is part of a more comprehensive application of lattice QCD to nuclear physics. This is particularly exciting in light of the new CORAL supercomputers coming online, Sierra and Summit, for which our lattice QCD codes achieve a machine-to-machine speed up over Titan of an order of magnitude.
Excited state contamination remains one of the most challenging sources of systematic uncertainty to control in lattice QCD calculations of nucleon matrix elements and form factors. Most lattice QCD collaborations advocate for the use of high-statist
We present a lattice QCD calculation of the $Delta(1232)$ matrix elements of the axial-vector and pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant form factors is carried out and the techniques
Matrix elements of six-quark operators are needed to extract new physics constraints from experimental searches for neutron-antineutron oscillations. This work presents in detail the first lattice quantum chromodynamics calculations of the necessary
Recent results from lattice QCD simulations provide a realistic picture, based upon first principles, of~$Upsilon$ physics. We combine these results with the experimentally measured mass of the $Upsilon$~meson to obtain an accurate and reliable value
We present lattice results for the non-perturbative Collins-Soper (CS) kernel, which describes the energy-dependence of transverse momentum-dependent parton distributions (TMDs). The CS kernel is extracted from the ratios of first Mellin moments of q