ترغب بنشر مسار تعليمي؟ اضغط هنا

Garbage In, Garbage Out? Do Machine Learning Application Papers in Social Computing Report Where Human-Labeled Training Data Comes From?

190   0   0.0 ( 0 )
 نشر من قبل R.Stuart Geiger
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many machine learning projects for new application areas involve teams of humans who label data for a particular purpose, from hiring crowdworkers to the papers authors labeling the data themselves. Such a task is quite similar to (or a form of) structured content analysis, which is a longstanding methodology in the social sciences and humanities, with many established best practices. In this paper, we investigate to what extent a sample of machine learning application papers in social computing --- specifically papers from ArXiv and traditional publications performing an ML classification task on Twitter data --- give specific details about whether such best practices were followed. Our team conducted multiple rounds of structured content analysis of each paper, making determinations such as: Does the paper report who the labelers were, what their qualifications were, whether they independently labeled the same items, whether inter-rater reliability metrics were disclosed, what level of training and/or instructions were given to labelers, whether compensation for crowdworkers is disclosed, and if the training data is publicly available. We find a wide divergence in whether such practices were followed and documented. Much of machine learning research and education focuses on what is done once a gold standard of training data is available, but we discuss issues around the equally-important aspect of whether such data is reliable in the first place.



قيم البحث

اقرأ أيضاً

Supervised machine learning, in which models are automatically derived from labeled training data, is only as good as the quality of that data. This study builds on prior work that investigated to what extent best practices around labeling training d ata were followed in applied ML publications within a single domain (social media platforms). In this paper, we expand by studying publications that apply supervised ML in a far broader spectrum of disciplines, focusing on human-labeled data. We report to what extent a random sample of ML application papers across disciplines give specific details about whether best practices were followed, while acknowledging that a greater range of application fields necessarily produces greater diversity of labeling and annotation methods. Because much of machine learning research and education only focuses on what is done once a ground truth or gold standard of training data is available, it is especially relevant to discuss issues around the equally-important aspect of whether such data is reliable in the first place. This determination becomes increasingly complex when applied to a variety of specialized fields, as labeling can range from a task requiring little-to-no background knowledge to one that must be performed by someone with career expertise.
We propose a bandit algorithm that explores by randomizing its history of rewards. Specifically, it pulls the arm with the highest mean reward in a non-parametric bootstrap sample of its history with pseudo rewards. We design the pseudo rewards such that the bootstrap mean is optimistic with a sufficiently high probability. We call our algorithm Giro, which stands for garbage in, reward out. We analyze Giro in a Bernoulli bandit and derive a $O(K Delta^{-1} log n)$ bound on its $n$-round regret, where $Delta$ is the difference in the expected rewards of the optimal and the best suboptimal arms, and $K$ is the number of arms. The main advantage of our exploration design is that it easily generalizes to structured problems. To show this, we propose contextual Giro with an arbitrary reward generalization model. We evaluate Giro and its contextual variant on multiple synthetic and real-world problems, and observe that it performs well.
Research at the intersection of machine learning and the social sciences has provided critical new insights into social behavior. At the same time, a variety of critiques have been raised ranging from technical issues with the data used and features constructed, problematic assumptions built into models, their limited interpretability, and their contribution to bias and inequality. We argue such issues arise primarily because of the lack of social theory at various stages of the model building and analysis. In the first half of this paper, we walk through how social theory can be used to answer the basic methodological and interpretive questions that arise at each stage of the machine learning pipeline. In the second half, we show how theory can be used to assess and compare the quality of different social learning models, including interpreting, generalizing, and assessing the fairness of models. We believe this paper can act as a guide for computer and social scientists alike to navigate the substantive questions involved in applying the tools of machine learning to social data.
89 - Danny Dolev , Eli Gafni 2016
We show that asynchronous $t$ faults Byzantine system is equivalent to asynchronous $t$-resilient system, where unbeknownst to all, the private inputs of at most $t$ processors were altered and installed by a malicious oracle. The immediate ramific ation is that dealing with asynchronous Byzantine systems does not call for new topological methods, as was recently employed by various researchers: Asynchronous Byzantine is a standard asynchronous system with an input caveat. It also shows that two recent independent investigations of vector $epsilon$-agreement in the Byzantine model, and then in the fail-stop model, one was superfluous - in these problems the change of $t$ inputs allowed in the Byzantine has no effect compared to the fail-stop case. This result was motivated by the aim of casting any asynchronous system as a synchronous system where all processors are correct and it is the communication substrate in the form of message-adversary that misbehaves. Thus, in addition, we get such a characterization for the asynchronous Byzantine system.
Background: The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put mi llions of lives in danger. Mitigating this Infodemic requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. Objective: We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. Methods: We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. Results: A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot Satya increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. Conclusion: We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا