ﻻ يوجد ملخص باللغة العربية
We describe the PDFI_SS software library, which is designed to find the electric field at the Suns photosphere from a sequence of vector magnetogram and Doppler velocity measurements, and estimates of horizontal velocities obtained from local correlation tracking using the recently upgraded FLCT code. The library, a collection of Fortran subroutines, uses the PDFI technique described by Kazachenko et al. (2014), but modified for use in spherical, Plate-Carree geometry on a staggered grid. The domain over which solutions are found is a subset of the global spherical surface, defined by user-specified limits of colatitude and longitude. Our staggered-grid approach, based on that of Yee (1966), is more conservative and self-consistent compared to the centered, Cartesian grid used by Kazachenko et al. (2014). The library can be used to compute an end-to-end solution for electric fields from data taken by the HMI instrument aboard NASAs SDO Mission. This capability has been incorporated into the HMI pipeline processing system operating at SDOs JSOC. The library is written in a general and modular way so that the calculations can be customized to modify or delete electric field contributions, or used with other data sets. Other applications include nudging numerical models of the solar atmosphere to facilitate assimilative simulations. The library includes an ability to compute global (whole-Sun) electric field solutions. The library also includes an ability to compute Potential Magnetic Field solutions in spherical coordinates. This distribution includes a number of test programs which allow the user to test the software.
A method of calculating induced electric field is presented in this paper. Induced electric field in solar atmosphere is derived by the time variation of magnetic field when the charged particle accumulation is neglected. In order to get the spatial
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magne
This work is a continuation of Paper I [Sharykin et al., 2018] devoted to analysis of nonthermal electron dynamics and plasma heating in the confined M1.2 class solar flare SOL2015-03-15T22:43 revealing energy release in the highly sheared interactin
{This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare pla