ﻻ يوجد ملخص باللغة العربية
Using the Bondi-Sachs formalism, the problem of a gravitational wave source surrounded by a spherical dust shell is considered. Using linearized perturbation theory, the geometry is found in the regions: in the shell, exterior to the shell, and interior to the shell. It is found that the dust shell causes the gravitational wave to be modified both in magnitude and phase, but without any energy being transferred to or from the dust.
In the current work we investigate the propagation of electromagnetic waves in the field of gravitational waves. Starting with simple case of an electromagnetic wave travelling in the field of a plane monochromatic gravitational wave we introduce the
We solve the Laplace equation $Box h_{ij}=0$ describing the propagation of gravitational waves in an expanding background metric with a power law scale factor in the presence of a point mass in the weak field approximation (Newtonian McVittie backgro
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einsteins vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by obse
In testing gravity a model-independent way, one of crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity the propaga
The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The role of twist in the relation of the Rosen coordinates adapted to a null congruence with the fund