ﻻ يوجد ملخص باللغة العربية
Superconductor-ferromagnetic heterostructures have been suggested as one of the most promising alternatives of realizing odd-frequency superconductivity. In this work we consider the limit of shrinking the ferromagnetic region to the limit of a single impurity embedded in a conventional superconductor, which gives raise to localized Yu-Shiba-Rusinov (YSR) bound states with energies inside the superconducting gap. We demonstrate that all the sufficient ingredients for generating odd-frequency pairing are present at the vicinity of these impurities. We investigate the appearance of all possible pair amplitudes in accordance with the Berezinskii $SP^{ast}OT^{ast} = -1$ rule, being the symmetry under the exchange of spin, spatial, orbital (in our case $O=+1$) and time index, respectively. We study the spatial and frequency dependence of of the possible pairing amplitudes, analyzing their evolution with impurity strength and identifying a reciprocity between different symmetries related through impurity scattering. We show that the odd-frequency spin-triplet pairing amplitude dominates at the critical impurity strength, where the YSR states merge at the middle of the gap, while the even components cancel out close to the impurity. We also show that the spin-polarized local density of states exhibits the same spatial and frequency behavior as the odd-$omega$ spin-triplet component at the critical impurity strength.
It is shown that the application of sufficiently strong magnetic field to the odd-frequency paired Pair Density Wave state described in Phys. Rev. B 94, 165114 (2016) leads to formation of a low temperature metallic state with zero Hall response. App
Unconventional superconductors are of high interest due to their rich physics, a topical example being topological edge-states associated with $p$-wave superconductivity. A practical obstacle in studying such systems is the very low critical temperat
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these materials because of the chirality degr
Superconductivity and magnetic order strongly compete in many conventional superconductors, at least partly because both tend to gap the Fermi surface. In magnetically-ordered conventional superconductors, the competition between these cooperative ph