ترغب بنشر مسار تعليمي؟ اضغط هنا

Storage Ring to Search for Electric Dipole Moments of Charged Particles -- Feasibility Study

79   0   0.0 ( 0 )
 نشر من قبل Christian Carli
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The proposed method exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM) aligned along the particle spin axis. Statistical sensitivities could approach 10$^{-29}$ e$cdot$cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarisation, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarisation from the longitudinal to the vertical direction. The slow rise in the vertical polarisation component, detected through scattering from a target, signals the EDM. The project strategy is outlined. A stepwise plan is foreseen, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal plane polarization lifetimes, and control of the polarization direction through feedback from scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally a high-precision electric-field storage ring.

قيم البحث

اقرأ أيضاً

A calorimetric polarimeter based on inorganic LYSO scintillators is described. It has been designed for use in a storage ring to search for electric dipole moments (EDM) of charged particles such as the proton and deuteron. Its development and first use was on the Cooler Synchrotron (COSY) at the Forschungszentrum Julich with 0.97 GeV/c polarized deuterons, a particle and energy suitable for an EDM search. The search requires a polarimeter with high efficiency, large analyzing power, and stable operating characteristics. With typical beam momenta of about 1 GeV/c, the scattering of protons or deuterons from a carbon target into forward angles becomes a nearly optimal choice of an analyzing reaction. The polarimeter described here consists of 52 LYSO detector modules, arranged in 4 symmetric blocks (up, down, left, right) for energy determination behind plastic scintillators for particle identification via energy loss. The commissioning results of the current setup demonstrate that the polarimeter is ready to be employed in a first direct search for an EDM on the deuteron, which is planned at COSY in the next two years.
Searches for permanent electric dipole moments of fundamental particles and systems with spin are the experiments most sensitive to new CP violating physics and a top priority of a growing international community. We briefly review the current status of the field emphasizing on the charged leptons and lightest baryons.
This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM, $vec d$) aligned along the particle spin axis. Statistical sensitivities can approach $10^{-29}$~e$cdot$cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization ($vec d timesvec E$). The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring.
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}ecdot$cm by using polarized magic momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.
Until now no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishingly small, escaping detection for the last 65 years, is not easy to explain. In general it is considered as one of the most sensitive probes for the vio lation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/antimatter asymmetry of the Universe. The neutron EDM might one day help to distinguish different sources of CP-violation in combination with measurements of paramagnetic molecules, diamagnetic atoms and other nuclei. This review presents an overview of the most important concepts in searches for an nEDM as well as a brief overview of the worldwide efforts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا