ﻻ يوجد ملخص باللغة العربية
A handful of fast radio bursts (FRBs) are now known to repeat. However, the question remains --- do they all? We report on an extensive observational campaign with the Australian Square Kilometre Array Pathfinder (ASKAP), Parkes, and Robert C. Byrd Green Bank Telescope, searching for repeat bursts from FRBs detected by the Commensal Real-time ASKAP Fast Transients survey. In 383.2 hr of follow-up observations covering 27 FRBs initially detected as single bursts, only two repeat bursts from a single FRB, FRB 171019, were detected, which have been previously reported by Kumar et al. We use simulations of repeating FRBs that allow for clustering in burst arrival times to calculate new estimates for the repetition rate of FRB 171019, finding only slight evidence for incompatibility with the properties of FRB 121102. Our lack of repeat bursts from the remaining FRBs set limits on the model of all bursts being attributable to repeating FRBs. Assuming a reasonable range of repetition behaviour, at most 60% (90% C.L.) of these FRBs having an intrinsic burst distribution similar to FRB~121102. This result is shown to be robust against different assumptions on the nature of repeating FRB behaviour, and indicates that if indeed all FRBs repeat, the majority must do so very rarely.
Fast Radio Bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. In order to understand the phenomenon that emits these pulses, targeted and untargeted searches have been performed for multi-wavelength counterparts,
We present the results of a coordinated campaign conducted with the Murchison Widefield Array (MWA) to shadow Fast Radio Bursts (FRBs) detected by the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, which resulted in simultaneous MWA
We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. FRBs occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times l
Fast radio bursts (FRBs) are bright, unresolved, millisecond-duration flashes of radio emission originating from outside of the Milky Way. The source of these mysterious outbursts is unknown, but their high luminosity, high dispersion measure and sho
In this paper we develop a model for fast radio bursts (FRBs) based on triggered superradiance (SR) and apply it to previously published data of FRB 110220 and FRB 121102. We show how a young pulsar located at ~100 pc or more from an SR/FRB system co