ﻻ يوجد ملخص باللغة العربية
Stellar variability studies are now reaching a completely new level thanks to ESAs Gaia mission, which enables us to locate many variable stars in the Hertzsprung-Russell diagram and determine the various instability strips/bands. Furthermore, this mission also allows us to detect, characterise and classify many millions of new variable stars thanks to its very unique nearly simultaneous multi-epoch survey with different instruments (photometer, spectro-photometer, radial velocity spectrometer). An overview of what can be found in literature in terms of mostly data products by the Gaia consortium is given. This concerns the various catalogues of variable stars derived from the Gaia time series and also the location and motion of variable stars in the observational Hertzsprung-Russell diagram. In addition, we provide a list of a few thousands of variable white dwarf candidates derived from the DR2 published data, among them probably many hundreds of new pulsating white dwarfs. On a very different topic, we also show how Gaia allows us to reveal the 3D structures of and around the Milky Way thanks to the RR Lyrae stars.
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the
We used Gaia Data Release 2 to search for upcoming photometric microlensing events, identifying two candidates with high amplification. In the case of candidate 1, a spectrum of the lens (l1) confirms it is a usdM3 subdwarf with mass $approx 0.11 M_o
In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of varia
We have re-analyzed the data used by Bessel, von Struve, and Henderson in the 1830s to measure the first parallax distances to stars. We can generally reproduce their results, although we find that von Struve and Henderson have underestimated some of
We present a novel method to detect variable astrophysical objects and transient phenomena using anomalous excess scatter in repeated measurements from public catalogs of Gaia DR2 and Zwicky Transient Facility (ZTF) DR3 photometry. We first provide a