ﻻ يوجد ملخص باللغة العربية
Josephson radiation is a powerful method to probe Majorana zero modes in topological superconductors. Recently, Josephson radiation with half the Josephson frequency has been experimentally observed in a HgTe-based junction, possibly from Majorana zero modes. However, this radiation vanishes above a critical voltage, sharply contradicting previous theoretical results. In this work, we theoretically obtain a radiation spectrum quantitatively in agreement with the experiment after including the nonlinear dynamics of the Majorana states into the standard resistively shunted junction model. We further predict two new structures of the radiation spectrum for future experimental verification: an interrupted emission line and a chaotic regime. We develop a fixed-point analysis to understand all these features. Our results resolve an apparent discrepancy between theory and experiments, and will inspire reexamination of structures in radiation spectra of various topological Josephson junctions.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals
Since the proposal of monopole Cooper pairing in Ref. [1], considerable research efforts have been dedicated to the study of Copper pair order parameters constrained (or obstructed) by the nontrivial normal-state band topology at Fermi surfaces. In t
Majorana zero modes are fractional quantum excitations appearing in pairs, each pair being a building block for quantum computation . Some possible signatures of these excitations have been reported as zero bias peaks at endpoints of one-dimensional
We study a superconductor-normal state-superconductor (SNS) Josephson junction along the edge of a quantum spin Hall insulator (QSHI) with a superconducting $pi$-phase across the junction. We solve self-consistently for the superconducting order para
We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with a $p_x pm i p_y$ superconducting g