ترغب بنشر مسار تعليمي؟ اضغط هنا

Measures of Scale Dependent Alfvenicity in the First PSP Solar Encounter

327   0   0.0 ( 0 )
 نشر من قبل Tulasi Nandan Parashar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar wind shows periods of highly Alfvenic activity, where velocity fluctuations and magnetic fluctuations are aligned or anti-aligned with each other. It is generally agreed that solar wind plasma velocity and magnetic field fluctuations observed by Parker Solar Probe (PSP) during the first encounter are mostly highly Alfvenic. However, quantitative measures of Alfvenicity are needed to understand how the characterization of these fluctuations compares with standard measures from prior missions in the inner and outer heliosphere, in fast wind and slow wind, and at high and low latitudes. To investigate this issue, we employ several measures to quantify the extent of Alfvenicity -- the Alfven ratio $r_A$, {normalized} cross helicity $sigma_c$, {normalized} residual energy $sigma_r$, and the cosine of angle between velocity and magnetic fluctuations $costheta_{vb}$. We show that despite the overall impression that the Alfvenicity is large in the solar wind sampled by PSP during the first encounter, during some intervals the cross helicity starts decreasing at very large scales. These length-scales (often $> 1000 d_i$) are well inside inertial range, and therefore, the suppression of cross helicity at these scales cannot be attributed to kinetic physics. This drop at large scales could potentially be explained by large-scale shears present in the inner heliosphere sampled by PSP. In some cases, despite the cross helicity being constant down to the noise floor, the residual energy decreases with scale in the inertial range. These results suggest that it is important to consider all these measures to quantify Alfvenicity.

قيم البحث

اقرأ أيضاً

The first computation of the compressible energy transfer rate from $sim$ 0.2 AU up to $sim$ 1.7 AU is obtained using PSP, THEMIS and MAVEN observations. The compressible energy cascade rate $varepsilon_C$ is computed for hundred of events at differe nt heliocentric distances, for time intervals when the spacecraft were in the pristine solar wind. The observational results show moderate increases of $varepsilon_C$ with respect to the incompressible cascade rate $varepsilon_I$. Depending on the level of compressibility in the plasma, which reach up to 25 $%$ in the PSP perihelion, the different terms in the compressible exact relation are shown to have different impact in the total cascade rate $varepsilon_C$. Finally, the observational results are connected with the local ion temperature and the solar wind heating problem.
We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12-day closest approach centered on the 1st perihelion. AWSoM (van der Holst et al., 2014) allows us to interpret the P SP data in the context of coronal heating via Alfven wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbulent energy cascade. To apportion the wave dissipation to the electron and anisotropic proton temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011). We find that during the first encounter, PSP was in close proximity to the heliospheric current sheet (HCS) and in the slow wind. PSP crossed the HCS two times, namely at 2018/11/03 UT 01:02 and 2018/11/08 UT 19:09 with perihelion occuring on the south of side of the HCS. We predict the plasma state along the PSP trajectory, which shows a dominant proton parallel temperature causing the plasma to be firehose unstable.
Magnetic field fluctuations in the solar wind are commonly observed to follow a power law spectrum. Near proton-kinetic scales, a spectral break occurs which is commonly interpreted as a transition to kinetic turbulence. However, this transition is n ot yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from Parker Solar Probe (textit{PSP}), we measure the proton scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic scale turbulence under various plasma conditions. We find that the break frequency $f_b$ increases as the heliocentric distance $r$ decreases in the slow solar wind following a power law $f_bsim r^{-1.11}$. We also compare this to the characteristic plasma ion scales to relate the break to the possible physical mechanisms occurring at this scale. The ratio between $f_b$ and $f_c$, the Doppler shifted ion cyclotron resonance scale, is approximately unity for all plasma $beta_p$. At high $beta_p$ the ratio between $f_b$ and $f_rho$, the Doppler shifted gyroscale, is approximately unity; while at low $beta_p$ the ratio between $f_b$ and $f_d$, the Doppler shifted proton-inertial length is unity. Due to the large comparable Alfven and solar wind speeds, we analyze these results using both the standard and modified Taylor hypothesis, demonstrating robust statistical results.
154 - Daniel Verscharen 2019
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free path s of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
Simulation results from a global magnetohydrodynamic model of the solar corona and solar wind are compared with Parker Solar Probe (PSP) observations during its first five orbits. The fully three-dimensional model is based on Reynolds-averaged mean-f low equations coupled with turbulence transport equations. The model includes the effects of electron heat conduction, Coulomb collisions, turbulent Reynolds stresses, and heating of protons and electrons via a turbulent cascade. Turbulence transport equations for average turbulence energy, cross helicity, and correlation length are solved concurrently with the mean-flow equations. Boundary conditions at the coronal base are specified using solar synoptic magnetograms. Plasma, magnetic field, and turbulence parameters are calculated along the PSP trajectory. Data from the first five orbits are aggregated to obtain trends as a function of heliocentric distance. Comparison of simulation results with PSP data shows good agreement, especially for mean-flow parameters. Synthetic distributions of magnetic fluctuations are generated, constrained by the local rms turbulence amplitude given by the model. Properties of this computed turbulence are compared with PSP observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا