ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Segmentation for Compound figures

322   0   0.0 ( 0 )
 نشر من قبل Weixin Jiang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientific literature contains large volumes of unstructured data,with over 30% of figures constructed as a combination of multiple images, these compound figures cannot be analyzed directly with existing information retrieval tools. In this paper, we propose a semantic segmentation approach for compound figure separation, decomposing the compound figures into master images. Each master image is one part of a compound figure governed by a subfigure label (typically (a), (b), (c), etc). In this way, the separated subfigures can be easily associated with the description information in the caption. In particular, we propose an anchor-based master image detection algorithm, which leverages the correlation between master images and subfigure labels and locates the master images in a two-step manner. First, a subfigure label detector is built to extract the global layout information of the compound figure. Second, the layout information is combined with local features to locate the master images. We validate the effectiveness of proposed method on our labeled testing dataset both quantitatively and qualitatively.

قيم البحث

اقرأ أيضاً

Open compound domain adaptation (OCDA) is a domain adaptation setting, where target domain is modeled as a compound of multiple unknown homogeneous domains, which brings the advantage of improved generalization to unseen domains. In this work, we pro pose a principled meta-learning based approach to OCDA for semantic segmentation, MOCDA, by modeling the unlabeled target domain continuously. Our approach consists of four key steps. First, we cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner. Then, different sub-target domains are split into independent branches, for which batch normalization parameters are learnt to treat them independently. A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code. Meanwhile, we learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization. We validate the benefits of our approach by extensive experiments on synthetic-to-real knowledge transfer benchmark datasets, where we achieve the state-of-the-art performance in both compound and open domains.
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convoluti on-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
In this paper, we seek reasons for the two major failure cases in Semantic Segmentation (SS): 1) missing small objects or minor object parts, and 2) mislabeling minor parts of large objects as wrong classes. We have an interesting finding that Failur e-1 is due to the underuse of detailed features and Failure-2 is due to the underuse of visual contexts. To help the model learn a better trade-off, we introduce several Self-Regulation (SR) losses for training SS neural networks. By self, we mean that the losses are from the model per se without using any additional data or supervision. By applying the SR losses, the deep layer features are regulated by the shallow ones to preserve more details; meanwhile, shallow layer classification logits are regulated by the deep ones to capture more semantics. We conduct extensive experiments on both weakly and fully supervised SS tasks, and the results show that our approach consistently surpasses the baselines. We also validate that SR losses are easy to implement in various state-of-the-art SS models, e.g., SPGNet and OCRNet, incurring little computational overhead during training and none for testing.
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, whi ch requires pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive attention to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to-end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: https://github.com/Lixy1997/Group-WSSS.
332 - Ye Huang , Di Kang , Wenjing Jia 2021
Spatial and channel attentions, modelling the semantic interdependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing spatial and channel attentions separately sometimes causes errors, especially for those difficult cases. In this paper, we propose Channelized Axial Attention (CAA) to seamlessly integrate channel attention and spatial attention into a single operation with negligible computation overhead. Specifically, we break down the dot-product operation of the spatial attention into two parts and insert channel relation in between, allowing for independently optimized channel attention on each spatial location. We further develop grouped vectorization, which allows our model to run with very little memory consumption without slowing down the running speed. Comparative experiments conducted on multiple benchmark datasets, including Cityscapes, PASCAL Context, and COCO-Stuff, demonstrate that our CAA outperforms many state-of-the-art segmentation models (including dual attention) on all tested datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا