ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-induced phase transition in Dirac systems beyond the linear approximation

110   0   0.0 ( 0 )
 نشر من قبل Frederic Teppe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the self-consistent Born approximation, we investigate disorder effect induced by the short-range impurities on the band-gap in two-dimensional Dirac systems with the higher order terms in momentum. Starting from the Bernevig-Hughes-Zhang (BHZ) model, we calculate the density-of-states as a function of the disorder strength. We show that due to quadratic corrections to the Dirac Hamiltonian, the band-gap is always affected by the disorder even if the system is gapless in the clean limit. Finally, we explore the disorder effects by using an advanced effective Hamiltonian describing the side maxima of the valence subband in HgTe~quantum wells. We show that the band-gap and disorder-induced topological phase transition in the real structures may differ significantly from those predicted within the BHZ model.

قيم البحث

اقرأ أيضاً

218 - Jihong Qin , , Huaiming Guo 2013
The topological property in one dimension (1D) is protected by symmetry. Based on a concrete model, we show that since a 1D topological model usually contain two of the three Pauli matrix, the left one automatically become the protecting symmetry. We study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the 1D topological phase. Based on the 1D topological model, a stable quantum pumping can be constructed, which is topologically nontrivial and can be characterized by the Chern number. By calculating the instantaneous local current we show that an integer charge is pumped across a periodic chain in a cyclic process. Also on an open chain, an edge state can be transferred to the other edge by the quantum pumping. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals.
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskite s Y2CoIrO6 and Y2CoRuO6 synthesized at ambient pressure show B-site order, while the polymorphs synthesized at 6 and 15 GPa are partially-ordered and disordered respectively. With the decrease of ordering degrees, the lattices are shrunken and the crystal structures alter from monoclinic to orthorhombic symmetry. Correspondingly, long-range ferrimagnetic order in the B-site ordered phases are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.
We report the experimental realization of a correlated insulating phase in 2D GaAs/AlGaAs heterostructures at low electron densities in a limited window of background disorder. This has been achieved at mesoscopic length scales, where the insulating phase is characterized by a universal hopping transport mechanism. Transport in this regime is determined only by the average electron separation, independent of the topology of background disorder. We have discussed this observation in terms of a pinned electron solid ground state, stabilized by mutual interplay of disorder and Coulomb interaction.
223 - S. M. Badalyan , G. Vignale , 2007
We study the spin Coulomb drag in a quasi-two-dimensional electron gas beyond the random phase approximation (RPA). We find that the finite transverse width of the electron gas causes a significant reduction of the spin Coulomb drag. This reduction, however, is largely compensated by the enhancement coming from the inclusion of many-body local field effects beyond the RPA, thereby restoring good agreement with the experimental observations by C. P. Weber textit{et al.}, Nature, textbf{437}, 1330 (2005).
By means of synchrotron X-ray diffraction, we studied the effect of high pressure, P, up to 13 GPa on the room temperature crystal structure of superconducting CaC6. In this P range, no change of the pristine space group symmetry, textit{R=3m}, is fo und. However, at 9 GPa, i.e. close to the critical value at which a large T_c reduction was reported recently, we observed a compressibility jump concomitant to a large broadening of Bragg peaks. The reversibility of both effects upon depressurization and symmetry arguments give evidence of an order-disorder phase transition of second order, presumably associated with the Ca sublattice, which provides a full account for the above Tc reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا