ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Wait: Wi-Fi Contention Control using Load-based Predictions

65   0   0.0 ( 0 )
 نشر من قبل Thomas Sandholm
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and experimentally evaluate a novel method that dynamically changes the contention window of access points based on system load to improve performance in a dense Wi-Fi deployment. A key feature is that no MAC protocol changes, nor client side modifications are needed to deploy the solution. We show that setting an optimal contention window can lead to throughput and latency improvements up to 155%, and 50%, respectively. Furthermore, we devise an online learning method that efficiently finds the optimal contention window with minimal training data, and yields an average improvement in throughput of 53-55% during congested periods for a real traffic-volume workload replay in a Wi-Fi test-bed.

قيم البحث

اقرأ أيضاً

We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput w ith varying training data set sizes using a 3-day trace of real cable modem traffic.
Real-time measurements on the occupancy status of indoor and outdoor spaces can be exploited in many scenarios (HVAC and lighting system control, building energy optimization, allocation and reservation of spaces, etc.). Traditional systems for occup ancy estimation rely on environmental sensors (CO2, temperature, humidity) or video cameras. In this paper, we depart from such traditional approaches and propose a novel occupancy estimation system which is based on the capture of Wi-Fi management packets from users devices. The system, implemented on a low-cost ESP8266 microcontroller, leverages a supervised learning model to adapt to different spaces and transmits occupancy information through the MQTT protocol to a web-based dashboard. Experimental results demonstrate the validity of the proposed solution in four different indoor university spaces.
Smartphone apps for exposure notification and contact tracing have been shown to be effective in controlling the COVID-19 pandemic. However, Bluetooth Low Energy tokens similar to those broadcast by existing apps can still be picked up far away from the transmitting device. In this paper, we present a new class of methods for detecting whether or not two Wi-Fi-enabled devices are in immediate physical proximity, i.e. 2 or fewer meters apart, as established by the U.S. Centers for Disease Control and Prevention (CDC). Our goal is to enhance the accuracy of smartphone-based exposure notification and contact tracing systems. We present a set of binary machine learning classifiers that take as input pairs of Wi-Fi RSSI fingerprints. We empirically verify that a single classifier cannot generalize well to a range of different environments with vastly different numbers of detectable Wi-Fi Access Points (APs). However, specialized classifiers, tailored to situations where the number of detectable APs falls within a certain range, are able to detect immediate physical proximity significantly more accurately. As such, we design three classifiers for situations with low, medium, and high numbers of detectable APs. These classifiers distinguish between pairs of RSSI fingerprints recorded 2 or fewer meters apart and pairs recorded further apart but still in Bluetooth range. We characterize their balanced accuracy for this task to be between 66.8% and 77.8%.
Given that the accuracy of range-based positioning techniques generally increases with the number of available anchor nodes, it is important to secure more of these nodes. To this end, this paper studies an unsupervised learning technique to obtain t he coordinates of unknown nodes that coexist with anchor nodes. As users use the location services in an area of interests, the proposed method automatically discovers unknown nodes and estimates their coordinates. In addition, this method learns an appropriate calibration curve to correct the distortion of raw distance measurements. As such, the positioning accuracy can be greatly improved using more anchor nodes and well-calibrated distance measurements. The performance of the proposed method was verified using commercial Wi-Fi devices in a practical indoor environment. The experiment results show that the coordinates of unknown nodes and the calibration curve are simultaneously determined without any ground truth data.
According to the LTE-U Forum specification, a LTE-U base-station (BS) reduces its duty cycle from 50% to 33% when it senses an increase in the number of co-channel Wi-Fi basic service sets (BSSs) from one to two. The detection of the number of Wi-Fi BSSs that are operating on the channel in real-time, without decoding the Wi-Fi packets, still remains a challenge. In this paper, we present a novel machine learning (ML) approach that solves the problem by using energy values observed during LTE-U OFF duration. Observing the energy values (at LTE-U BS OFF time) is a much simpler operation than decoding the entire Wi-Fi packets. In this work, we implement and validate the proposed ML based approach in real-time experiments, and demonstrate that there are two distinct patterns between one and two Wi-Fi APs. This approach delivers an accuracy close to 100% compared to auto-correlation (AC) and energy detection (ED) approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا