ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of simulated galaxies and supermassive black holes in cosmic voids

114   0   0.0 ( 0 )
 نشر من قبل M\\'elanie Habouzit
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic voids, the under-dense regions of the cosmic web, are widely used to constrain cosmology. Voids contain few, isolated galaxies, presumably expected to be less evolved and preserving memory of the pristine Universe. We use the cosmological hydrodynamical simulation Horizon-AGN coupled to the void finder {sc texttt{VIDE}} to investigate properties of galaxies in voids at z=0. We find that, closer to void centers, low-mass galaxies are more common than their massive counterparts. At fixed dark matter halo mass, they have smaller stellar masses than in denser regions. The star formation rate of void galaxies diminishes when approaching void centers, but their sSFR slightly increases, suggesting that void galaxies form stars more efficiently with respect to their stellar mass. We find that this can not only be attributed to the prevalence of low-mass galaxies. The inner region of voids also predominantly host low-mass BHs. However, the BH mass to galaxy mass ratios resemble those of the whole simulation at z=0. Our results suggest that even if the growth channels in cosmic voids are different than in denser environments, voids grow their galaxies and BHs in a similar way. While a large fraction of the BHs have low Eddington ratios, we find that 20% could be observed as AGN with log10 L=41.5-42.5 erg/s in hard X-ray (2-10 keV). These results pave the way to future work with larger next-generation hydro simulations, aiming to confirm our findings and prepare the application on data from upcoming large surveys such as PFS, Euclid and WFIRST.

قيم البحث

اقرأ أيضاً

The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as we ll as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback . The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
104 - A. Marasco , G. Cresci , L. Posti 2021
We study the relations between the mass of the central black hole (BH) $M_{rm BH}$, the dark matter halo mass $M_{rm h}$, and the stellar-to-halo mass fraction $f_starpropto M_star/M_{rm h}$ in a sample of $55$ nearby galaxies with dynamically measur ed $M_{rm BH}>10^6,{rm M}_odot$ and $M_{rm h}>5times10^{11},{rm M}_odot$. The main improvement with respect to previous studies is that we consider both early- and late-type systems for which $M_{rm h}$ is determined either from globular cluster dynamics or from spatially resolved rotation curves. Independently of their structural properties, galaxies in our sample build a well defined sequence in the $M_{rm BH}$-$M_{rm h}$-$f_star$ space. We find that: (i) $M_{rm h}$ and $M_{rm BH}$ strongly correlate with each other and anti-correlate with $f_star$; (ii) there is a break in the slope of the $M_{rm BH}$-$M_{rm h}$ relation at $M_{rm h}$ of $10^{12},{rm M}_odot$, and in the $f_star$-$M_{rm BH}$ relation at $M_{rm BH}$ of $sim10^7!-!10^8,{rm M}_odot$; (iii) at a fixed $M_{rm BH}$, galaxies with a larger $f_star$ tend to occupy lighter halos and to have later morphological types. We show that the observed trends can be reproduced by a simple equilibrium model in the $Lambda$CDM framework where galaxies smoothly accrete dark and baryonic matter at a cosmological rate, having their stellar and black hole build-up regulated both by the cooling of the available gas reservoir and by the negative feedback from star formation and active galactic nuclei (AGN). Feature (ii) arises as the BH population transits from a rapidly accreting phase to a more gentle and self-regulated growth, while scatter in the AGN feedback efficiency can account for feature (iii).
113 - Gerold Busch 2016
In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. - have been found and point at a coevolution scenario of BH and host galaxy. In this article, I review some of these relations for inactive galaxies and discuss the findings for galaxies that host an active galactic nucleus/quasar. I present the results of our group that finds that active galaxies at $zlesssim 0.1$ do not follow the BH mass - bulge luminosity relation. Furthermore, I show near-infrared integral-field spectroscopic data that suggest that young stellar populations cause the bulge overluminosity and indicate that the host galaxy growth started first. Finally, I discuss implications for the BH-host coevolution.
We present the detection of supermassive black holes (BHs) in two Virgo ultracompact dwarf galaxies (UCDs), VUCD3 and M59cO. We use adaptive optics assisted data from the Gemini/NIFS instrument to derive radial velocity dispersion profiles for both o bjects. Mass models for the two UCDs are created using multi-band Hubble Space Telescope (HST) imaging, including the modeling of mild color gradients seen in both objects. We then find a best-fit stellar mass-to-light ratio ($M/L$) and BH mass by combining the kinematic data and the deprojected stellar mass profile using Jeans Anisotropic Models (JAM). Assuming axisymmetric isotropic Jeans models, we detect BHs in both objects with masses of $4.4^{+2.5}_{-3.0} times 10^6$ $M_{odot}$ in VUCD3 and $5.8^{+2.5}_{-2.8} times 10^6$ $M_{odot}$ in M59cO (3$sigma$ uncertainties). The BH mass is degenerate with the anisotropy parameter, $beta_z$; for the data to be consistent with no BH requires $beta_z = 0.4$ and $beta_z = 0.6$ for VUCD3 and M59cO, respectively. Comparing these values with nuclear star clusters shows that while it is possible that these UCDs are highly radially anisotropic, it seems unlikely. These detections constitute the second and third UCDs known to host supermassive BHs. They both have a high fraction of their total mass in their BH; $sim$13% for VUCD3 and $sim$18% for M59cO. They also have low best-fit stellar $M/L$s, supporting the proposed scenario that most massive UCDs host high mass fraction BHs. The properties of the BHs and UCDs are consistent with both objects being the tidally stripped remnants of $sim$10$^9$ M$_odot$ galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا