ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnosing the Stellar Population and Tidal Structure of the Blanco1 Star Cluster

107   0   0.0 ( 0 )
 نشر من قبل Shih-Yun Tang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the stellar population, using {it Gaia},DR2 parallax, kinematics, and photometry, of the young ($sim 100$~Myr), nearby ($sim 230$~pc) open cluster, Blanco1. A total of 644 member candidates are identified via the unsupervised machine learning method textsc{StarGO} to find the clustering in the 5-dimensional position and proper motion parameter ($X$, $Y$, $Z$, $mu_alpha cosdelta$, $mu_delta$) space. Within the tidal radius of $10.0 pm 0.3$~pc, there are 488 member candidates, 3 times more than those outside. A leading tail and a trailing tail, each of 50--60~pc in the Galactic plane, are found for the first time for this cluster, with stars further from the cluster center streaming away faster, manifest stellar stripping. Blanco1 has a total detected mass of $285pm32$~M$_odot $ with a mass function consistent with a slope of $alpha=1.35pm0.2$ in the sense of $dN/dm propto m^{-alpha}$, in the mass range of 0.25--2.51~M$_odot $, where $N$ is the number of members and $m$ is stellar mass. A Minimum Spanning Tree ($Lambda_{rm MSR}$) analysis shows the cluster to be moderately mass segregated among the most massive members ($gtrsim 1.4$~M$_odot$), suggesting an early stage of dynamical disintegration.



قيم البحث

اقرأ أيضاً

The evolution of globular clusters due to 2-body relaxation results in an outward flow of energy and at some stage all clusters need a central energy source to sustain their evolution. Henon provided the insight that we do not need to know the detail s of the energy production in order to understand the relaxation-driven evolution of the cluster, at least outside the core. He provided two self-similar solutions for the evolution of clusters based on the view that the cluster as a whole determines the amount of energy that is produced in the core: steady expansion for isolated clusters, and homologous contraction for clusters evaporating in a tidal field. We combine these models: the half-mass radius increases during the first half of the evolution, and decreases in the second half; while the escape rate approaches a constant value set by the tidal field. We refer to these phases as `expansion dominated and `evaporation dominated. These simple analytical solutions immediately allow us to construct evolutionary tracks and isochrones in terms of cluster half-mass density, cluster mass and galacto-centric radius. From a comparison to the Milky Way globular clusters we find that roughly 1/3 of them are in the second, evaporation-dominated phase and for these clusters the density inside the half-mass radius varies with the galactocentric distance R as rho_h ~ 1/R^2. The remaining 2/3 are still in the first, expansion-dominated phase and their isochrones follow the environment-independent scaling rho_h ~ M^2; that is, a constant relaxation time-scale. We find substantial agreement between Milky Way globular cluster parameters and the isochrones, which suggests that there is, as Henon suggested, a balance between the flow of energy and the central energy production for almost all globular clusters.
307 - Tereza Jerabkova 2021
The tidal tails of stellar clusters provide an important tool for studying the birth conditions of the clusters and their evolution, coupling, and interaction with the Galactic potential. We present the N-body evolution of a Hyades-like stellar clust er with backward-integrated initial conditions on a realistic 3D orbit in the Milky Way computed within the AMUSE framework. For the first time, we explore the effect of the initial cluster rotation and the presence of lumps in the Galactic potential on the formation and evolution of tidal tails. We show that the tidal tails are not naturally clustered in any coordinate system. Models with initial rotation result in significant differences in the cluster mass loss and follow different angular momentum time evolution. The orientation of the tidal tails relative to the motion vector of the cluster and the current cluster angular momentum constrain the initial rotation of the cluster. We highlight the use of the convergent point (CP) method in searches for co-moving groups and introduce a new compact CP (CCP) method that accounts for internal kinematics based on an assumed model. Using the CCP method, we are able to recover candidate members of the Hyades tidal tails in the Gaia DR2 and eDR3 reaching a total extent of almost 1kpc. We confirm the previously noted asymmetry in the detected tidal tails. In the eDR3 data we recovered spatial overdensities in the leading and trailing tails that are kinematically consistent with being epicyclic overdensities and thus present candidates for the first such detection in an open star cluster. We show that the epicyclic overdensities are able to provide constraints not only on the cluster properties, but also on the Galactic potential. Finally, based on N-body simulations, a close encounter with a massive Galactic lump can explain the observed asymmetry in the tidal tails of the Hyades.(abriged)
149 - Nicola Da Rio 2014
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues on the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing t he latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC, and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, consistent with a higher degree of dynamical processing. At larger distances the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the ISM density, estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor $sim 1.8$ to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that, at the half-mass radius, 90% of the stellar population formed within $sim 5$-$8$ free-fall times ($t_{rm ff}$). This implies a star formation efficiency per $t_{rm ff}$ of $epsilon_{rm ff}sim 0.04$-$0.07$, i.e., relatively slow and inefficient star formation rates during star cluster formation.
115 - M. Zoccali 2009
The Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (M_bulge=1.8x10^10 M_sun; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of the Galaxy to have collapsed into stars. Understanding its structure, and the properties of its stellar population, is therefore of great relevance for galaxy formation models. I will review our current knowledge of the bulge properties, with special emphasis on chemical abundances, recently measured for several hundred stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا