ﻻ يوجد ملخص باللغة العربية
Large-area lithium-drifted silicon (Si(Li)) detectors, operable 150{deg}C above liquid nitrogen temperature, have been developed for the General Antiparticle Spectrometer (GAPS) balloon mission and will form the first such system to operate in space. These 10 cm-diameter, 2.5 mm-thick multi-strip detectors have been verified in the lab to provide <4 keV FWHM energy resolution for X-rays as well as tracking capability for charged particles, while operating in conditions (~-40{deg}C and ~1 Pa) achievable on a long-duration balloon mission with a large detector payload. These characteristics enable the GAPS silicon tracker system to identify cosmic antinuclei via a novel technique based on exotic atom formation, de-excitation, and annihilation. Production and large-scale calibration of ~1000 detectors has begun for the first GAPS flight, scheduled for late 2021. The detectors developed for GAPS may also have other applications, for example in heavy nuclei identification.
The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors
A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in w
This study presents a fabrication process for lithium-drifted silicon (Si(Li)) detectors that, compared to previous methods, allows for mass production at a higher yield, while providing a large sensitive area and low leakage currents at relatively h
Intense fluxes of reactor antineutrinos offer a unique possibility to probe the fully coherent character of elastic neutrino scattering off atomic nuclei. In this regard, detectors face the challenge to register tiny recoil energies of a few keV at t
We have developed large-area lithium-drifted silicon (Si(Li)) detectors to meet the unique requirements of the General Antiparticle Spectrometer (GAPS) experiment. GAPS is an Antarctic balloon-borne mission scheduled for the first flight in late 2020