ﻻ يوجد ملخص باللغة العربية
We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one $approx 68$ FWHM primary beam area with $7.6$ FWHM resolution and $0.55 pm 0.01$ $mu$Jy/beam rms noise. Its J2000 center position $alpha=04^h 13^m 26.4^s$, $delta=-80^circ 00 00$ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary beam attenuation pattern, estimate telescope pointing errors, and pinpoint $(u,v)$ coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion $P(D)$ distribution from $0.25$ to $10$ $mu$Jy with counts of individual DEEP2 sources between $10$ $mu$Jy and $2.5$ mJy. Most sources fainter than $S sim 100$ $mu$Jy are distant star-forming galaxies obeying the FIR/radio correlation, and sources stronger than $0.25$ $mu$Jy account for $sim93%$ of the radio background produced by star-forming galaxies. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson (2014) model for the evolution of star-forming galaxies based on UV and infrared data underpredicts our 1.4 GHz source count in the range $-5 lesssim log[S(mathrm{Jy})] lesssim -4$.
The IRAS Revised Bright Galaxy Sample (RBGS) comprises galaxies and unresolved mergers stronger than $S = 5.24$ Jy at $lambda = 60~mumathrm{m}$ with galactic latitudes $vert b vert > 5^circ$. Nearly all are dusty star-forming galaxies whose radio con
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to $mu$Jy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ~1 square degree MeerKAT poi
We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc an
Deep galaxy surveys have revealed that the global star formation rate (SFR) density in the Universe peaks at 1 < z < 2 and sharply declines towards z = 0. But a clear picture of the underlying processes, in particular the evolution of cold atomic (~1
ThunderKAT is the image-plane transients programme for MeerKAT. The goal as outlined in 2010, and still today, is to find, identify and understand high-energy astrophysical processes via their radio emission (often in concert with observations at oth