ﻻ يوجد ملخص باللغة العربية
The CMS drift tubes (DT) muon detector, built for withstanding the LHC expected integrated and instantaneous luminosities, will be used also in the High Luminosity LHC (HL-LHC) at a 5 times larger instantaneous luminosity and, consequently, much higher levels of radiation, reaching about 10 times the LHC integrated luminosity. Initial irradiation tests of a spare DT chamber at the CERN gamma irradiation facility (GIF++), at large ($sim$O(100)) acceleration factor, showed ageing effects resulting in a degradation of the DT cell performance. However, full CMS simulations have shown almost no impact in the muon reconstruction efficiency over the full barrel acceptance and for the full integrated luminosity. A second spare DT chamber was moved inside the GIF++ bunker in October 2017. The chamber was being irradiated at lower acceleration factors, and only 2 out of the 12 layers of the chamber were switched at working voltage when the radioactive source was active, being the other layers in standby. In this way the other non-aged layers are used as reference and as a precise and unbiased telescope of muon tracks for the efficiency computation of the aged layers of the chamber, when set at working voltage for measurements. An integrated dose equivalent to two times the expected integrated luminosity of the HL-LHC run has been absorbed by this second spare DT chamber and the final impact on the muon reconstruction efficiency is under study. Direct inspection of some extracted aged anode wires presented a melted resistive deposition of materials. Investigation on the outgassing of cell materials and of the gas components used at the GIF++ are underway. Strategies to mitigate the ageing effects are also being developed. From the long irradiation measurements of the second spare DT chamber, the effects of radiation in the performance of the DTs expected during the HL-LHC run will be presented.
A new small-diameter Monitored Drift Tube (sMDT) chamber has been developed for the muon spectrometer of the ATLAS experiment to handle the higher collision rates expected at the CERN High Luminosity Large Hadron Collider (HL-LHC). This paper present
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs. A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CER
The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed fo
The High-Luminosity LHC (HL-LHC) will provide the unique opportunity to explore the nature of physics beyond the Standard Model of strong and electroweak interactions. Highly selective first-level triggers are essential for the physics programme of t
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking pe