ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Diatomic Carbon in 2I/Borisov

57   0   0.0 ( 0 )
 نشر من قبل Hsing-Wen Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

2I/Borisov is the first-ever observed interstellar comet (and the second detected interstellar object). It was discovered on 30 August 2019 and has a heliocentric orbital eccentricity of ~ 3.35, corresponding to a hyperbolic orbit that is unbound to the Sun. Given that it is an interstellar object, it is of interest to compare its properties -- such as composition and activity -- with the comets in our Solar System. This study reports low-resolution optical spectra of 2I/Borisov. The spectra were obtained by the MDM observatory Hiltner 2.4m telescope/Ohio State Multi-Object Spectrograph (on 1 and 5 November 2019). The wavelength coverage spanned from 3700A to 9200A. The dust continuum reflectance spectra of 2I/Borisov show that the spectral slope is stepper in the blue end of the spectrum (compared to the red). The spectra of 2I/Borisov clearly show CN emission at 3880A, as well as C2 emission at both 4750A and 5150A. Using a Haser model to covert the observed fluxes into estimates for the molecular production rates, we find Q(CN) = 2.4 +/- 0.2 x 10^24 s^-1, and Q(C2) = 5.5 +/- 0.4 x 10^23 s^-1 at the heliocentric distance of 2.145 au. Our Q(CN) estimate is consistent with contemporaneous observations, and the Q(C2) estimate is generally below the upper limits of previous studies. We derived the ratio Q(C2)/Q(CN) = 0.2 +/- 0.1, which indicates that 2I/Borisov is depleted in carbon chain species, but is not empty. This feature is not rare for the comets in our Solar System, especially in the class of Jupiter Family Comets.



قيم البحث

اقرأ أيضاً

The composition of comets in the Solar System come in multiple groups thought to encode information about their formation in different regions of the outer protosolar disk. The recent discovery of the second interstellar object, 2I/Borisov, allows fo r spectroscopic investigations into its gas content and a preliminary classification of it within the Solar System comet taxonomies to test the applicability of planetesimal formation models to other stellar systems. We present spectroscopic and imaging observations from 2019 September 20th to October 26th at the Bok, MMT, and LBT telescopes. We identify CN in the comets spectrum and set precise upper limits on the abundance of C2 on all dates. We use a Haser model to convert our integrated fluxes to production rates and find Q(CN) = 5.0 +/- 2.0 * 10^24 mol/s on September 20th and Q(CN) = 1.1 - 1.9 * 10^24 mol/s on later dates, both consistent with contemporaneous observations. We set our lowest upper limit on a C2 production rate, Q(C2) < 1.6 * 10^23 mol/s, on October 10th. The measured ratio upper limit for that date, Q(C2)/Q(CN) < 0.095 indicates that 2I/Borisov is strongly in the (carbon chain) depleted taxonomic group. The only comparable Solar System comets have detected ratios near this limit, making 2I/Borisov statistically likely to be more depleted than any known comet. Most depleted comets are Jupiter Family Comets, perhaps indicating a similiarity in formation conditions between the most depleted of the JFCs and 2I/Borisov. More work is needed to understand the applicability of our knowledge of Solar System comet taxonomies onto interstellar objects, and we discuss future work that could help clarify the usefulness of the approach.
Interstellar comets offer direct samples of volatiles from distant protoplanetary disks. 2I/Borisov is the first notably active interstellar comet discovered in our solar system[1]. Comets are condensed samples of the gas, ice, and dust that were in a stars protoplanetary disk during the formation of its planets and inform our understanding on how chemical compositions and abundances vary with distance from the central star. Their orbital migration moves volatiles[2], organic material, and prebiotic chemicals in their host system[3]. In our solar system, hundreds of comets have been observed remotely, and a few have been studied up close by space missions[4]. However, knowledge of extrasolar comets has been limited to what could be gleaned from distant, unresolved observations of cometary regions around other stars, with only one detection of carbon monoxide[5]. Here we report that the coma of 2I/Borisov contains significantly more CO than H2O gas, with abundances of at least 173%, more than three times higher than previously measured for any comet in the inner (<2.5 au) solar system[4]. Our ultraviolet observations of 2I/Borisov provide the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star that is substantially different from our own.
The detection of Interstellar Objects passing through the Solar System offers the promise of constraining the physical and chemical processes involved in planetary formation in other extrasolar systems. While the effect of outgassing by 1I/2017 U1 (O umuamua) was dynamically observed, no direct detection of the ejected material was made. The discovery of the active interstellar comet 2I/Borisov means spectroscopic investigations of the sublimated ices is possible for this object. We report the first detection of gas emitted by an interstellar comet via the near-UV emission of CN from 2I/Borisov at a heliocentric distance of $r$ = 2.7 au on 2019 September 20. The production rate was found to be Q(CN) = $(3.7pm0.4)times10^{24}$ s$^{-1}$, using a simple Haser model with an outflow velocity of 0.5 km s$^{-1}$. No other emission was detected, with an upper limit to the production rate of C$_2$ of $4times10^{24}$ s$^{-1}$. The spectral reflectance slope of the dust coma over $3900$ AA $< lambda< 6000$ AA is steeper than at longer wavelengths, as found for other comets. Broad band $R_c$ photometry on 2019 September 19 gave a dust production rate of $Afrho=143pm10$ cm. Modelling of the observed gas and dust production rates constrains the nuclear radius to $0.7-3.3$ km assuming reasonable nuclear properties. Overall, we find the gas, dust and nuclear properties for the first active Interstellar Object are similar to normal Solar System comets.
78 - Chien-Hsiu Lee 2019
2I/Borisov is the second interstellar object (ISO) after Oumuamua (Meech et al. 2017), but differs from Oumuamua drastically with its extensive cometary activity. A key ingredient to understand the nature of this comet is its size. However, due to it s cometary activity and extended coma in the optical, only rough estimates and upper limits can be made for 2I/Borisov, ranging in a wide spread from 0.7 to 3.8 km (Guzik et al. 2019; Fitzsimmons et al. 2019; Jewitt, & Luu 2019; Bolin et al. 2019). It has been shown that observations at longer wavelengths (i.e. infrared) are less susceptible to the effects of coma, and can provide a better estimate of the size of the comet nucleus (see, e.g., Fernandez et al. 2013; Bauer et al. 2017). Here we present an estimate of the nucleus of 2I/Borisov from infrared observations by FLAMINGOS-2 on-board the Gemini South telescope (under Fast Turnaround program GS-2019B-FT-207), and infer a comet nucleus size of 1.5 km, comparable to but more stringent than the estimate from Keck AO imaging by Bolin et al. (2019).
We present high resolution imaging observations of interstellar comet 2I/Borisov (formerly C/2019 Q4) obtained using the Hubble Space Telescope. Scattering from the comet is dominated by a coma of large particles (characteristic size 0.1 mm) ejected anisotropically. Convolution modeling of the coma surface brightness profile sets a robust limit to the spherical-equivalent nucleus radius r_n < 0.5 km (geometric albedo 0.04 assumed). We obtain an independent constraint based on the non-gravitational acceleration of the nucleus, finding r_n > 0.2 km (nucleus density 500 kg/m3 assumed). The profile and the non-gravitational constraints cannot be simultaneously satisfied if density < 25 kg/m3; the nucleus of comet Borisov cannot be a low density fractal assemblage of the type proposed elsewhere for the nucleus of 1I/Oumuamua. We show that the spin-up timescale to outgassing torques, even at the measured low production rates, is comparable to or shorter than the residence time in the Suns water sublimation zone. The spin angular momentum of the nucleus should be changed significantly during the current solar fly-by. Lastly, we find that the differential interstellar size distribution in the 0.5 mm to 100 m size range can be represented by power laws with indices < 4 and that interstellar bodies of 100 m size scale strike Earth every one to two hundred million years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا