ﻻ يوجد ملخص باللغة العربية
Many unconventional superconductors exhibit a common set of anomalous charge transport properties that characterize them as `strange metals, which provides hope that there is single theory that describes them. However, model-independent connections between the strange metal and superconductivity have remained elusive. In this letter, we show that the Hall effect of the unconventional superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$ contains an anomalous contribution arising from the correlations within the strange metal. This term has a distinctive dependence on magnetic field, which allows us to track its behavior across the doping-temperature phase diagram, even under the superconducting dome. These measurements demonstrate that the strange metal Hall component emanates from a quantum critical point and, in the zero temperature limit, decays in proportion to the superconducting critical temperature. This creates a clear and novel connection between quantum criticality and superconductivity, and suggests that similar connections exist in other strange metal superconductors.
Motivated by the close correlation between transition temperature ($T_c$) and the tetrahedral bond angle of the As-Fe-As layer observed in the iron-based superconductors, we study the interplay between spin and orbital physics of an isolated iron-ars
We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, together with the ferromagnetic quantum criticality and paramagnetic singularity on the Ising 5f-itinerant system UCoAl. Thanks to the variety of ordered moment in
We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalizat
Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field ($H_{c2}$) of the iron-based superconductor FeSe ($T_c$ = 8.6 K) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures
We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base o