ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian analysis of $bto smu^+mu^-$ Wilson coefficients using the full angular distribution of $Lambda_bto Lambda(to p, pi^-)mu^+mu^-$ decays

72   0   0.0 ( 0 )
 نشر من قبل Danny van Dyk
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following updated and extended measurements of the full angular distribution of the decay $Lambda_bto Lambda(to p,pi^-)mu^+mu^-$ by the LHCb collaborations, as well as a new measurement of the $Lambda to p pi^-$ decay asymmetry parameter by the BESIII collaboration, we study the impact of these results on searches for non-standard effects in exclusive $bto smu^+mu^-$ decays. To this end, we constrain the Wilson coefficients $mathcal{C}_{9}$ and $mathcal{C}_{10}$ of the numerically leading dimension-six operators in the weak effective Hamiltonian, in addition to the relevant nuisance parameters. In stark contrast to previous analyses of this decay mode, the changes in the updated experimental results lead us to find very good compatibility with both the Standard Model and with the $bto smu^+mu^-$ anomalies observed in rare $B$-meson decays. We provide a detailed analysis of the impact of the partial angular distribution, the full angular distribution, and the $Lambda_bto Lambdamu^+mu^-$ branching fraction on the Wilson coefficients. In this process, we are also able to constrain the size of the production polarization of the $Lambda_b$ baryon at LHCb.

قيم البحث

اقرأ أيضاً

A method to directly determine the Wilson coefficients for rare $bto s$ transitions using $B^0to K^{*0}mu^+mu^-$ decays in an unbinned maximum likelihood fit is presented. The method has several advantages compared to the conventional determination o f the Wilson coefficients from angular observables that are determined in bins of $q^2$, the square of the mass of the dimuon system. The method uses all experimental information in an optimal way and automatically accounts for experimental correlations. Performing pseudoexperiments, we show the improved sensitivity of the proposed method for the Wilson coefficients. We also demonstrate that it will be possible to use the method with the combined Run 1 and 2 data sample taken by the LHCb experiment.
The differential branching fraction of the rare decay $Lambda^{0}_{b} rightarrow Lambda mu^+mu^-$ is measured as a function of $q^{2}$, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, correspondi ng to an integrated luminosity of $3.0 mbox{ fb}^{-1}$, collected by the LHCb experiment. Evidence of signal is observed in the $q^2$ region below the square of the $J/psi$ mass. Integrating over $15 < q^{2} < 20 mbox{ GeV}^2/c^4$ the branching fraction is measured as $dmathcal{B}(Lambda^{0}_{b} rightarrow Lambda mu^+mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} pm 0.03 pm 0.27) times 10^{-7} ( mbox{GeV}^{2}/c^{4})^{-1}$, where the uncertainties are statistical, systematic and due to the normalisation mode, $Lambda^{0}_{b} rightarrow J/psi Lambda$, respectively. In the $q^2$ intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon ($A^{l}_{rm FB}$) and hadron ($A^{h}_{rm FB}$) systems are measured for the first time. In the range $15 < q^2 < 20 mbox{ GeV}^2/c^4$ they are found to be $A^{l}_{rm FB} = -0.05 pm 0.09 mbox{ (stat)} pm 0.03 mbox{ (syst)}$ and $A^{h}_{rm FB} = -0.29 pm 0.07 mbox{ (stat)} pm 0.03 mbox{ (syst)}$.
In the absence of direct evidence for New Physics at present LHC energies, the focus is set on the anomalies and discrepancies recently observed in rare $b to sellell$ transitions which can be interpreted as indirect hints. Global fits have shown tha t an economical New Physics solution can simultaneously alleviate the tensions in the various channels and can lead to a significant improvement in the description of the data. Alternative explanations within the Standard Model for part of the observed anomalies have been proposed in terms of (unexpectedly large) hadronic effects at low dilepton invariant mass and attributing tensions in protected observables to statistical fluctuations or experimental errors. We review the treatment of hadronic uncertainties in this kinematic regime for one of the most important channels, $B to K^*mu^+mu^-$, in a pedagogical way. We provide detailed arguments showing that factorisable power corrections cannot account for the observed anomalies and that an explanation through long-distance charm contributions is disfavoured. Some optimized observables at very low dilepton invariant mass are shown to be protected against contributions from the semileptonic coefficient $C_9$ (including any associated long-distance charm effects), enhancing their sensitivity to New Physics contributions to other Wilson coefficients. Finally, we discuss how the recent measurement of $Q_5$ by Belle (and in the future by LHCb and Belle-II) may provide a robust cross-check of our arguments.
A search for non-resonant D+(s) to pi+mu+mu- and D+(s) to pi-mu+mu+ decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb-1, at sqrt(s) = 7 TeV recorded by the LHCb experiment in 2011. No signals are observed and the 90% (95%) confidence level (CL) limits on the branching fractions are B(D+ to pi+mu+mu-) < 7.3 (8.3) x 10-8, B(Ds+ to pi+mu+mu-) < 4.1 (4.8) x 10-7, B(D+ to pi-mu+mu+) < 2.2 (2.5) x 10-8, B(Ds+ to pi-mu+mu+) < 1.2 (1.4) x 10-7. These limits are the most stringent to date.
The angular distributions of the rare decays $B^+ to K^+mu^+mu^-$ and $B^0 to K^0_{rmscriptscriptstyle S}mu^+mu^-$ are studied with data corresponding to 3$~$fb$^{-1}$ of integrated luminosity, collected in proton-proton collisions at 7 and 8$~$TeV c entre-of-mass energies with the LHCb detector. The angular distribution is described by two parameters, $F_{rm H}$ and the forward-backward asymmetry of the dimuon system $A_{rm FB}$, which are determined in bins of the dimuon mass squared. The parameter $F_{rm H}$ is a measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width. The measurements of $A_{rm FB}$ and $F_{rm H}$ reported here are the most precise to date and are compatible with predictions from the Standard Model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا