ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformally Regulated Direct Integration of the Two-Loop Heptagon Remainder

78   0   0.0 ( 0 )
 نشر من قبل Jacob Bourjaily
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We reproduce the two-loop seven-point remainder function in planar, maximally supersymmetric Yang-Mills theory by direct integration of conformally-regulated chiral integrands. The remainder function is obtained as part of the two-loop logarithm of the MHV amplitude, the regularized form of which we compute directly in this scheme. We compare the scheme-dependent anomalous dimensions and related quantities in the conformal regulator with those found for the Higgs regulator.



قيم البحث

اقرأ أيضاً

We exploit the recently described property of cluster adjacency for scattering amplitudes in planar $mathcal{N}=4$ super Yang-Mills theory to construct the symbol of the four-loop NMHV heptagon amplitude. We use a manifestly cluster adjacent ansatz a nd describe how the parameters of this ansatz are determined using simple physical consistency requirements. We then specialise our answer for the amplitude to the multi-Regge limit, finding agreement with previously available results up to the next-to-leading logarithm, and obtaining new predictions up to (next-to)$^3$-leading-logarithmic accuracy.
We introduce a method to extract the symbol of the coefficient of $(2pi i)^2$ of MHV remainder functions in planar N=4 Super Yang-Mills in multi-Regge kinematics region directly from the symbol in full kinematics. At two loops this symbol can be upli fted to the full function in a unique way, without any beyond-the-symbol ambiguities. We can therefore determine all two-loop MHV amplitudes at function level in all kinematic regions with different energy signs in multi-Regge kinematics. We analyse our results and we observe that they are consistent with the hypothesis of a contribution from the exchange of a three-Reggeon composite state starting from two loops and eight points in certain kinematic regions.
We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar N=4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematics limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann-zeta-valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.
We show that direct Feynman-parametric loop integration is possible for a large class of planar multi-loop integrals. Much of this follows from the existence of manifestly dual-conformal Feynman-parametric representations of planar loop integrals, an d the fact that many of the algebraic roots associated with (e.g. Landau) leading singularities are automatically rationalized in momentum-twistor space---facilitating direct integration via partial fractioning. We describe how momentum twistors may be chosen non-redundantly to parameterize particular integrals, and how strategic choices of coordinates can be used to expose kinematic limits of interest. We illustrate the power of these ideas with many concrete cases studied through four loops and involving as many as eight particles. Detailed examples are included as ancillary files to this works submission to the arXiv.
207 - Wei Gong , Zoltan Nagy , 2008
One approach to the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order is to perform all of the integrations, including the virtual loop integration, by Monte Carlo numerical integration. In a previous paper, two of us have shown how one can perform such a virtual loop integration numerically after first introducing a Feynman parameter representation. In this paper, we perform the integration directly, without introducing Feynman parameters, after suitably deforming the integration contour. Our example is the N-photon scattering amplitude with a massless electron loop. We report results for N = 6 and N = 8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا