ترغب بنشر مسار تعليمي؟ اضغط هنا

On the initial mass-radius relation of stellar clusters

69   0   0.0 ( 0 )
 نشر من قبل Nick Choksi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young stellar clusters across nearly five orders of magnitude in mass appear to follow a power-law mass-radius relationship (MRR), $R_{star} propto M_{star}^{alpha}$, with $alpha approx 0.2 - 0.33$. We develop a simple analytic model for the cluster mass-radius relation. We consider a galaxy disc in hydrostatic equilibrium, which hosts a population of molecular clouds that fragment into clumps undergoing cluster formation and feedback-driven expansion. The model predicts a mass-radius relation of $R_{star} propto M_{star}^{1/2}$ and a dependence on the kpc-scale gas surface density $R_{star} propto Sigma_{rm g}^{-1/2}$, which results from the formation of more compact clouds (and cluster-forming clumps within) at higher gas surface densities. This environmental dependence implies that the high-pressure environments in which the most massive clusters can form also induce the formation of clusters with the smallest radii, thereby shallowing the observed MRR at high-masses towards the observed $R_{star} propto M_{star}^{1/3}$. At low cluster masses, relaxation-driven expansion induces a similar shallowing of the MRR. We combine our predicted MRR with a simple population synthesis model and apply it to a variety of star-forming environments, finding good agreement. Our model predicts that the high-pressure formation environments of globular clusters at high redshift naturally led to the formation of clusters that are considerably more compact than those in the local Universe, thereby increasing their resilience to tidal shock-driven disruption and contributing to their survival until the present day.

قيم البحث

اقرأ أيضاً

185 - Mark Gieles 2010
Most globular clusters have half-mass radii of a few pc with no apparent correlation with their masses. This is different from elliptical galaxies, for which the Faber-Jackson relation suggests a strong positive correlation between mass and radius. O bjects that are somewhat in between globular clusters and low-mass galaxies, such as ultra-compact dwarf galaxies, have a mass-radius relation consistent with the extension of the relation for bright ellipticals. Here we show that at an age of 10 Gyr a break in the mass-radius relation at ~10^6 Msun is established because objects below this mass, i.e. globular clusters, have undergone expansion driven by stellar evolution and hard binaries. From numerical simulations we find that the combined energy production of these two effects in the core comes into balance with the flux of energy that is conducted across the half-mass radius by relaxation. An important property of this `balanced evolution is that the cluster half-mass radius is independent of its initial value and is a function of the number of bound stars and the age only. It is therefore not possible to infer the initial mass-radius relation of globular clusters and we can only conclude that the present day properties are consistent with the hypothesis that all hot stellar systems formed with the same mass-radius relation and that globular clusters have moved away from this relation because of a Hubble time of stellar and dynamical evolution.
In order to allow a better understanding of the origin of Galactic field populations, dynamical equivalence of stellar-dynamical systems has been postulated by Kroupa and Belloni et al. to allow mapping of solutions of the initial conditions of embed ded clusters such that they yield, after a period of dynamical processing, the Galactic field population. Dynamically equivalent systems are defined to initially and finally have the same distribution functions of periods, mass ratios and eccentricities of binary stars. Here we search for dynamically equivalent clusters using the {sc mocca} code. The simulations confirm that dynamically equivalent solutions indeed exist. The result is that the solution space is next to identical to the radius--mass relation of Marks & Kroupa, $left( r_h/{rm pc} right)= 0.1^{+0.07}_{-0.04}, left( M_{rm ecl}/{rm M}_odot right)^{0.13pm0.04}$. This relation is in good agreement with the observed density of molecular cloud clumps. According to the solutions, the time-scale to reach dynamical equivalence is about 0.5~Myr which is, interestingly, consistent with the lifetime of ultra-compact HII regions and the time-scale needed for gas expulsion to be active in observed very young clusters as based on their dynamical modelling.
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun ), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each clusters CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $Gamma_{rm MW} sim+1.15pm0.1$ and $Gamma_{rm LMC} sim+1.3pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
While the stellar Initial Mass Function (IMF) appears to be close to universal within the Milky Way galaxy, it is strongly suspected to be different in the primordial Universe, where molecular hydrogen cooling is less efficient and the gas temperatur e can be higher by a factor of 30. In between these extreme cases, the gas temperature varies depending on the environment, metallicity and radiation background. In this paper we explore if changes of the gas temperature affect the IMF of the stars considering fragmentation and accretion. The fragmentation behavior depends mostly on the Jeans mass at the turning point in the equation of state where a transition occurs from an approximately isothermal to an adiabatic regime due to dust opacities. The Jeans mass at this transition in the equation of state is always very similar, independent of the initial temperature, and therefore the initial mass of the fragments is very similar. Accretion on the other hand is strongly temperature dependent. We argue that the latter becomes the dominant process for star formation efficiencies above 5 - 7 %, increasing the average mass of the stars.
Resolved observations of millimetre-sized dust, tracing larger planetesimals, have pinpointed the location of 26 Edgeworth-Kuiper belt analogs. We report that a belts distance $R$ to its host star correlates with the stars luminosity $L_{star}$, foll owing $Rpropto L^{0.19}_{star}$ with a low intrinsic scatter of $sim$17%. Remarkably, our Edgeworth-Kuiper belt in the Solar System and the two CO snow lines imaged in protoplanetary disks lie close to this $R$-$L_{star}$ relation, suggestive of an intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation, we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias could produce the slope and intercept of the $R$-$L_{star}$ relation, but is unable to reproduce its low scatter. We then repeat the simulation taking into account the collisional evolution of belts, following the steady state model that fits the belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of the simulated $R$-$L_{star}$ relation; however, this scatter remains only marginally consistent with the one observed. The inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks. The similar trend for CO snow line locations would then indicate that the formation of planetesimals and/or planets in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا