ﻻ يوجد ملخص باللغة العربية
We report on three redshift $z>2$ quasars with dramatic changes in their C IV emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionisation emission line. SDSS J1205+3422, J1638+2827, and J2228+2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C IV broad emission line, with both line collapse and emergence being displayed on rest-frame timescales of $sim$240-1640 days. These are rapid changes, especially when considering virial black hole mass estimates of $M_{rm BH} > 10^{9} M_{odot}$ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C IV CLQs are generally above $sim$5% in Eddington luminosity.
If the disappearance of the broad emission lines observed in changing-look quasars originates from the obscuration of the quasar core by dusty clouds moving in the torus, high linear optical polarization would be expected in those objects. We then me
Changing-look quasars are a newly-discovered class of luminous active galactic nuclei that undergo rapid ($lesssim$10 year) transitions between Type 1 and Type 1.9/2, with an associated change in their continuum emission. We characterize the host gal
We present a systematic search for changing-look quasars based on repeat photometry from SDSS and Pan-STARRS1, along with repeat spectra from SDSS and SDSS-III BOSS. Objects with large, |Delta g|>1 mag photometric variations in their light curves are
Active galactic nuclei (AGN) that show strong rest-frame optical/UV variability in their blue continuum and broad line emission are classified as changing-look AGN, or at higher luminosities changing look quasars (CLQs). These surprisingly large and
Context:Quasars radiating at extreme Eddington ratios (xA) are likely a prime mover of galactic evolution and have been hailed as potential distance indicators. Their properties are still scarcely known. Aims:We test the effectiveness of the select