ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Statistical Uncertainties of Internal Kinematics of Galaxies and Star Clusters Derived Using Full Spectrum Fitting

165   0   0.0 ( 0 )
 نشر من قبل Igor Chilingarian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pixel-space full spectrum fitting exploiting non-linear $chi^2$ minimization became a emph{de facto} standard way of deriving internal kinematics from absorption line spectra of galaxies and star clusters. However, reliable estimation of uncertainties for kinematic parameters remains a challenge and is usually addressed by running computationally expensive Monte-Carlo simulations. Here we derive simple formulae for the radial velocity and velocity dispersion uncertainties based solely on the shape of a template spectrum used in the fitting procedure and signal-to-noise information. Comparison with Monte-Carlo simulations provides perfect agreement for different templates, signal-to-noise ratios and velocity dispersion between 0.5 and 10 times of the instrumental spectral resolution. We provide {sc IDL} and {sc python} implementations of our approach. The main applications are: (i) exposure time calculators; (ii) design of observational programs and estimates on expected uncertainties for spectral surveys of galaxies and star clusters; (iii) a cheap and accurate substitute for Monte-Carlo simulations when running them for large samples of thousands of spectra is unfeasible or when uncertainties reported by a non-linear minimization algorithms are not considered reliable.



قيم البحث

اقرأ أيضاً

Using deep machine learning we show that the internal velocities of galaxies can be retrieved from optical images trained using 4596 systems observed with the SDSS-MaNGA survey. Using only $i$-band images we show that the velocity dispersions and the rotational velocities of galaxies can be measured to an accuracy of 29 km~$rm{s}^{-1}$ and 69 km~$rm{s}^{-1}$ respectively, close to the resolution limit of the spectroscopic data. This shows that galaxy structures in the optical holds important information concerning the internal properties of galaxies and that the internal kinematics of galaxies are quantitatively reflected in their stellar light distributions beyond a simple rotational vs. dispersion distinction.
We present first results from our project to examine the internal kinematics of disk galaxies in 7 rich clusters with 0.3<=z<0.6. Spatially resolved MOS spectra have been obtained with FORS at the VLT. We concentrate here on the clusters MS1008.1-122 4 at z=0.30 and Cl0413-6559 (F1557.19TC) at z=0.51. Out of 22 cluster members, 12 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have intrinsically peculiar kinematics. The 12 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully-Fisher diagram very similar to field galaxies from the FORS Deep Field with corresponding redshifts. The same is true for 6 galaxies observed in the cluster fields that turned out not to be members. In particular, these cluster spirals do not show any significant luminosity evolution as might be expected from certain clusterspecific phenomena. Contrary to that, the other half of the cluster sample with disturbed kinematics also shows a higher degree of structural assymetries on average indicating ongoing or recent interaction processes.
(Abridged) We trace the interaction processes of galaxies at intermediate redshift by measuring the irregularity of their ionized gas kinematics, and investigate these irregularities as a function of the environment (cluster versus field) and of morp hological type (spiral versus irregular). Our sample consists of 92 distant galaxies. 16 cluster (z~0.3 and z~0.5) and 29 field galaxies (mean z=0.44) of these have velocity fields with sufficient signal to be analyzed. We find that the fraction of galaxies that have irregular gas kinematics is remarkably similar in galaxy clusters and in the field at intermediate redshifts. The distribution of the field and cluster galaxies in (ir)regularity parameters space is also similar. On the other hand galaxies with small central concentration of light, that we see in the field sample, are absent in the cluster sample. We find that field galaxies at intermediate redshifts have more irregular velocity fields as well as more clumpy and less centrally concentrated light distributions than their local counterparts. Comparison with a SINS sample of 11 z ~ 2 galaxies shows that these distant galaxies have more irregular gas kinematics than our intermediate redshift cluster and field sample. We do not find a dependence of the irregularities in gas kinematics on morphological type. We find that two different indicators of star formation correlate with irregularity in the gas kinematics. More irregular gas kinematics, also more clumpy and less centrally concentrated light distributions of spiral field galaxies at intermediate redshifts in comparison to their local counterparts indicate that these galaxies are probably still in the process of building their disks via mechanisms such as accretion and mergers. On the other hand, they have less irregular gas kinematics compared to galaxies at z ~ 2.
We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high S/N Hectospec data (Caldwell et al 2010). The data are well suited for analysis of M31s inner regions because we took partic ular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal poor clusters show kinematics which are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.
88 - B. L. Ziegler 2003
We introduce our project on galaxy evolution in the environment of rich clusters aiming at disentangling the importance of specific interaction and galaxy transformation processes from the hierarchical evolution of galaxies in the field. Emphasis is laid on the examination of the internal kinematics of disk galaxies through spatially resolved MOS spectroscopy with FORS at the VLT. First results are presented for the clusters MS1008.1-1224 (z=0.30), Cl0303+1706 (z=0.42), and Cl0413-6559 (F1557.19TC) (z=0.51). Out of 30 cluster members with emission-lines, 13 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have either intrinsically peculiar kinematics (4), or too strong geometric distortions (9) or too low S/N (4 galaxies) for a reliable classification of their velocity profiles. The 13 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully--Fisher diagram very similar to field galaxies from the FORS Deep Field that have corresponding redshifts and do not show any significant luminosity evolution with respect to local samples. The same is true for seven galaxies observed in the cluster fields that turned out not to be members. The mass-to-light ratios of the 13 TF cluster spirals cover the same range as the distant field population indicating that their stellar populations were not dramatically changed by possible clusterspecific interaction phenomena. The cluster members with distorted kinematics may be subject to interaction processes but it is impossible to determine whether these processes also lead to changes in the overall luminosity of their stellar populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا