ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the dynamical phase transition with a superconducting quantum simulator

444   0   0.0 ( 0 )
 نشر من قبل Kai Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-equilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of the dynamical phase transition, merging different concepts of dynamical criticality, are observed by measuring the non-equilibrium order parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain the optimal spin squeezing of $-7.0pm 0.8$ decibels, showing multipartite entanglement useful for measurements with precision five-fold beyond the standard quantum limit. Based on the capability of entangling qubits simultaneously and the accurate single-shot readout of multi-qubit states, this superconducting quantum simulator can be used to study other problems in non-equilibrium quantum many-body systems.

قيم البحث

اقرأ أيضاً

321 - J. Zhang , G. Pagano , P. W. Hess 2017
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, t he simulator can tackle a wider range of problems, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime where conventional statistical mechanics does not apply. The qubits are represented by trapped ion spins that can be prepared in a variety of initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with near 99% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the direct probing of the dynamical phase transition and the uncovering of computationally intractable features that rely on the long-range interactions and high connectivity between the qubits.
Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition.
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in (approximately) isolated systems. Here, achieving precise control over quantum many-body entanglemen t is an essential task for quantum sensing and computation. Extensive theoretical work suggests that these capabilities can enable dynamical phases and critical phenomena that exhibit topologically-robust methods to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors. However, to date, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders. In this work, we demonstrate an emergent dynamical symmetry protected topological phase (EDSPT), in a quasiperiodically-driven array of ten $^{171}text{Yb}^+$ hyperfine qubits in Honeywells System Model H1 trapped-ion quantum processor. This phase exhibits edge qubits that are dynamically protected from control errors, cross-talk, and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit-array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus of explorations in physical science for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to r ealize robust quantum computation. We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators that provide direct signatures of topological order and quantum correlations. Its properties are further revealed by using an atom array with nontrivial topology, representing a first step towards topological encoding. Our observations enable the controlled experimental exploration of topological quantum matter and protected quantum information processing.
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin coherent states to construct the corresponding Husimi-$Q$ quasi-probability distribution. The entropy of the $Q$-function, known as Wehrl entropy, provides a measure of the coarse-grained dynamics of the system and, therefore, evolves non-trivially even for closed systems. We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations. The former reflects the information scrambling characteristic of these transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo. Finally, we also study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to identify the relative contribution of the low energy sector to the emergence of DPTs. The results presented in this article are relevant not only from the dynamical quantum phase transition perspective, but also for the field of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of entropy production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا