ﻻ يوجد ملخص باللغة العربية
With the prosperity of smart contracts and the blockchain technology, various security analyzers have been proposed from both the academia and industry to address the associated risks. Yet, there does not exist a high-quality benchmark of smart contract vulnerability for security research. In this study, we propose an approach towards building a high-quality vulnerability benchmark. Our approach consists of two parts. First, to improve recall, we propose to search for similar vulnerabilities in an automated way by leveraging the abstract vulnerability signature (AVS). Second, to remove the false positives (FPs) due to AVS-based matching, we summarize the detection rules of existing tools and apply the refined rules by considering various defense mechanisms (DMs). By integrating AVS-based code matching and the refined detection rules (RDR), our approach achieves higher precision and recall. On the collected 76,354 contracts, we build a benchmark consisting of 1,219 vulnerabilities covering five different vulnerability types identified together by our tool (DOUBLADE) and other three scanners. Additionally, we conduct a comparison between DOUBLADE and the others, on an additional 17,770 contracts. Results show that DOUBLADE can yield a better detection accuracy with similar execution time.
In this work we propose Dynamit, a monitoring framework to detect reentrancy vulnerabilities in Ethereum smart contracts. The novelty of our framework is that it relies only on transaction metadata and balance data from the blockchain system; our app
With its unique advantages such as decentralization and immutability, blockchain technology has been widely used in various fields in recent years. The smart contract running on the blockchain is also playing an increasingly important role in decentr
Smart Contracts (SCs) in Ethereum can automate tasks and provide different functionalities to a user. Such automation is enabled by the `Turing-complete nature of the programming language (Solidity) in which SCs are written. This also opens up differ
Ethereum smart contracts are programs that can be collectively executed by a network of mutually untrusted nodes. Smart contracts handle and transfer assets of values, offering strong incentives for malicious attacks. Intrusion attacks are a popular
In this paper we discuss how conventional business contracts can be converted into smart contracts---their electronic equivalents that can be used to systematically monitor and enforce contractual rights, obligations and prohibitions at run time. We