ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential generation of linear cluster states from a single photon emitter

89   0   0.0 ( 0 )
 نشر من قبل Yehuda Pilnyak
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light states composed of multiple entangled photons - such as cluster states - are essential for developing and scaling-up quantum computing networks. Photonic cluster states with discrete variables can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically-low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable, photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology - a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed to generate linear-cluster states of any number of photons with record scaling ratios, potentially enabling practical implementation of photonic quantum computing schemes.



قيم البحث

اقرأ أيضاً

We study a system made up of one or two two-level quantum emitters, coupled to a single transverse mode of a closed waveguide, in which photon wavenumbers and frequencies are discretized, and characterize the stable states in which one excitation is steadily shared between the field and the emitters. We unearth finite-size effects in the field-emitter interactions and identify a family of dressed states, that represent the forerunners of bound states in the continuum in the limit of an infinite waveguide. We finally consider the potential interest of such states for applications in the field of quantum information.
We introduce plaquette projected entangled-pair states, a class of states in a lattice that can be generated by applying sequential unitaries acting on plaquettes of overlapping regions. They satisfy area-law entanglement, possess long-range correlat ions, and naturally generalize other relevant classes of tensor network states. We identify a subclass that can be more efficiently prepared in a radial fashion and that contains the family of isometric tensor network states. We also show how such subclass can be efficiently prepared using an array of photon sources.
We propose a unified and deterministic scheme to generate arbitrary single-photon multimode $W$ states in circuit QED. A three-level system (qutrit) is driven by a pump-laser pulse and coupled to $N$ spatially separated resonators. The coupling stren gth for each spatial mode $g_i$ totally decide the generated single-photon N-mode $W$ state $vert W_N rangle=frac{1}{A}sum_{i=1}^N g_i|0_1 0_2 cdots 1_i 0_{i+1}cdots 0_Nrangle$, so arbitrary $vert W_N rangle$ can be generated just by tuning $g_i$. We could not only generate $W$ states inside resonators but also release them into transmission lines on demand. The time and fidelity for generating (or emitting) $vert W_N rangle$ can both be the same for arbitrary $N$. Remarkably, $vert W_Nrangle$ can be emitted with probability reaching $98.9%$ in $20-50$ ns depending on parameters, comparable to the recently reported fastest two-qubit gate ($30-45$ ns). Finally, the time evolution process is convenient to control since only the pump pulse is time-dependent.
Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths v ia pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of $(6.25pm1.09)times10^{-11}$ per pump pulse at injected powers as low as $10;mumathrm{W}$, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology.
Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science applications. To date, the atomic and electronic origins of SPEs within hBN are not well understood, and no studies have reported photochromism or explored cross-correlations between hBN SPEs. Here, we combine irradiation-time dependent measures of quantum efficiency and microphotoluminescence (${mu}$PL) spectroscopy with two-color Hanbury Brown-Twiss interferometry to enable an investigation of the electronic structure of hBN defects. We identify photochromism in a hBN SPE that exhibits cross-correlations and correlated quantum efficiencies between the emission of its two zero-phonon lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا