ﻻ يوجد ملخص باللغة العربية
A framework is proposed for solving general convex quadratic programs (CQPs) from an infeasible starting point by invoking an existing feasible-start algorithm tailored for inequality-constrained CQPs. The central tool is an exact penalty function scheme equipped with a penalty-parameter updating rule. The feasible-start algorithm merely has to satisfy certain general requirements, and so is the updating rule. Under mild assumptions, the framework is proved to converge on CQPs with both inequality and equality constraints and, at a negligible additional cost per iteration, produces an infeasibility certificate, together with a feasible point for an (approximately) $ell_1$-least relaxed feasible problem when the given problem does not have a feasible solution. The framework is applied to a feasible-start constraint-reduced interior-point algorithm previously proved to be highly performant on problems with many more constraints than variables (imbalanced). Numerical comparison with popular codes (SDPT3, SeDuMi, MOSEK) is reported on both randomly generated problems and support-vector machine classifier training problems. The results show that the former typically outperforms the latter on imbalanced problems.
A constraint-reduced Mehrotra-Predictor-Corrector algorithm for convex quadratic programming is proposed. (At each iteration, such algorithms use only a subset of the inequality constraints in constructing the search direction, resulting in CPU savin
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ
Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest. Due to the witnessed efficiency in solving bi-level programs, gradient-based methods have gained popularity in the machine learning communi
We consider the nonsmooth convex composition optimization problem where the objective is a composition of two finite-sum functions and analyze stochastic compositional variance reduced gradient (SCVRG) methods for them. SCVRG and its variants have re
Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoreti